DOI QR코드

DOI QR Code

Photocatalytic conversion of CO2 into hydrocarbon fuels with standard titania (Degussa P25) using newly installed experimental setup

  • Kim, Hye Rim (Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Razzaq, Abdul (Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Heo, Hyo Jung (Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology) ;
  • In, Su-Il (Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology)
  • Received : 2013.06.10
  • Accepted : 2013.07.25
  • Published : 2013.06.01

Abstract

Photoreduction of $CO_2$ into hydrocarbon fuels on the surface of photocatalyst is one of the breakthroughs in the field of photocatalysis. At present various approaches have been investigated with the aim of increasing the $CO_2$ conversion efficiency. The reactor for photoconversion of $CO_2$ plays a vital role in experimental setup. In this work an attempt was made to testify a newly designed the photoreactor for conversion of $CO_2$ into useful products. The photoreactor was specifically designed for simple operation bearing features of temperature and pressure control. The reactor has been tested successively with the standard titania, Degussa P25 yielding methane with moderate production rate of 30.8 $ppm{\cdot}g^{-1}{\cdot}h^{-1}$ under UV lamp with 365 nm wavelength. The methane yield obtained is comparable to the values reported in literature. Thus we anticipate that this experimental setup equipped with newly designed photoreactor can yield competitive amounts of fuels from $CO_2$ photoredcution via 365 nm UV light illumination on various photocatalysts.

Keywords

References

  1. Z. Jiang.; T. Xiao.; V. L. Kuznetsov.; P. P. Edwards; Phil. Trans. R. Soc. A 2010, 368, 3343-3364. https://doi.org/10.1098/rsta.2010.0119
  2. Somnath C. Roy.; Oomman K. Varghese.; Maggie Paulose.; Craig A. Grimes; ACS nano 2010, 4, 1259-1278. https://doi.org/10.1021/nn9015423
  3. Zhen-Zhen Yang.; Liang-Nian He.; Jiao Gao.; An-Hua Liu.; Bing Yu.; Energy Environ. Sci. 2012, 5, 6602-6639. https://doi.org/10.1039/c2ee02774g
  4. Kay Damen.; Martijn van Troost.; Andre Faaij.; Wim Turkenburg.; Progress in Energy and Combustion Science 2006, 32, 215-246. https://doi.org/10.1016/j.pecs.2005.11.005
  5. Su-Il In.; Dimitri D. Vaughn II.; and Raymond E. Schaak.; Angew. Chem. Int. Ed. 2012, 51, 3915-3918. https://doi.org/10.1002/anie.201108936
  6. Tooru Inoue.; Akira Fujishima.; Satoshi Konishi.; Kenichi Honda.; Nature 1979, 277, 637-638. https://doi.org/10.1038/277637a0
  7. Guohua Liu.; Nils Hoivik.; Kaiying Wangn.; Henrik Jakobsen.; Solar Energy Materials & Solar Cells 2012, 105, 53-68. https://doi.org/10.1016/j.solmat.2012.05.037
  8. Kohsuke Mori.; Hiromi Yamashita.; Masakazu Anpo.; RSC Advances 2012, 2, 3165-3172. https://doi.org/10.1039/c2ra01332k
  9. Suil In.; Alexander Orlov.; Regina Berg.; Felipe Garcia.; Sergio Pedrosa-Jimenez.; Dominic S. Wright.; Richard M. Lambert.; Mintcho S. Tikhov.; J. Am. Chem. Soc. 2007, 129, 13790-13791 https://doi.org/10.1021/ja0749237
  10. Albertus D H.; Kimfung L.; Junwang T.; Current Opinion in Chemical Engineering 2013, 2, 200-206. https://doi.org/10.1016/j.coche.2012.12.003

Cited by

  1. Cu 2 ZnSnS 4 (CZTS)-ZnO: A noble metal-free hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO 2 to CH 4 vol.20, 2017, https://doi.org/10.1016/j.jcou.2017.05.021
  2. Hybrid mesoporous Cu2ZnSnS4(CZTS)–TiO2photocatalyst for efficient photocatalytic conversion of CO2into CH4under solar irradiation vol.6, pp.45, 2016, https://doi.org/10.1039/C6RA02763F
  3. Hybrid CuxO–TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel vol.1, pp.5, 2016, https://doi.org/10.1021/acsomega.6b00164
  4. Efficient solar light photoreduction of CO 2 to hydrocarbon fuels via magnesiothermally reduced TiO 2 photocatalyst vol.215, 2017, https://doi.org/10.1016/j.apcatb.2017.05.028
  5. Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes vol.498, 2015, https://doi.org/10.1016/j.apcata.2015.03.044
  6. Facile fabrication of a noble metal-free photocatalyst: TiO 2 nanotube arrays covered with reduced graphene oxide vol.98, 2016, https://doi.org/10.1016/j.carbon.2015.11.053
  7. Photocoupled Bioanode: A New Approach for Improved Microbial Fuel Cell Performance 2017, https://doi.org/10.1002/ente.201700177