Browse > Article

Photocatalytic Degradation of Pheonol in UV/TiO2 Honeycomb Reactor  

Han, Po-Keun (Department of Chemical and Bio Engineering, Kyungwon University)
Park, Sang-Eun (Department of Chemical and Bio Engineering, Kyungwon University)
Lee, Sang-Wha (Department of Chemical and Bio Engineering, Kyungwon University)
Publication Information
Applied Chemistry for Engineering / v.17, no.1, 2006 , pp. 100-105 More about this Journal
Abstract
The photocatalytic activity of phenol degradation was investigated with the variation of operating parameters in $UV/TiO_2$ honeycomb reactor. In the comparison of phenol degradation rates among various $TiO_2$, Ishihara (STS-02)-coated honeycomb exhibited a slightly higher photocatalytic activity than Degussa P25-coated honeycomb. On the other hand, honeycomb coated by alcohol-mixed $TiO_2$ (N Co.) did not exhibit any photocatalytic activity on phenol degradation. With the increase of Degussa P25 coating amounts, the honeycomb reactor exhibited the gradual increase of phenol degradation rates. The degradation rate of phenol over $UV/TiO_2$ (Degussa P25) honeycomb reactor was asymptotically increased up to 500 mL/min, subsequently followed by a slight decrease as the recirculation rate (100~700 mL/min) was increased. UV absorption at 269 nm was high due to partial degradation of phenol at initial reaction time because the honeycomb surface was pre-adsorbed by phenol prior to UV irradiation.
Keywords
$UV/TiO_2$; photocatalyst; fixed-bed; honeycomb; phenol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Boca Raton, FL (1989)
2 N. Serpone, E. Borgarello, R. Harris, P. Cahill, and E. Pelizzetti, Sol. Energy Mater., 14, 121 (1986)   DOI   ScienceOn
3 R. W. Matthews, Solar Energy, 38, 405 (1987)   DOI   ScienceOn
4 J. W. Ha, Perspectives of Industrial Chemistry, 4, 38 (2001)
5 M. M. Hossain and G. B. Raupp, Chem. Eng. Sci., 54, 3027 (1999)   DOI   ScienceOn
6 R. W. Matthews, J. Phys. Chem., 91, 3328 (1987)   DOI
7 K. Okamoto, Y. Yamamoto, H. Tanaka, and M. Tanaka, Bull. Chem. Soc. Jpn., 58, 2015 (1985)   DOI
8 Y. J. Yoo, C. H. Cho, H. S. Kim, Y. S. Ahn, and G. E. Jang, J. Korean Ind. Eng. Chem., 14, 852 (2003)
9 A. E. Cassano, C. A. Martin, R. J. Brandi, and O. M. Alfano, Ind. Eng. Chem. Res., 34, 2155 (1995)   DOI   ScienceOn
10 N. J. Peill and M. R. Hoffmann, Environ. Sci. Technol., 29, 2974 (1995)   DOI
11 R. Sun, A. Nakajima, I. Watanabe, T. Watanabe, and K. Hashimoto, J. Photochetn. Photobiol. A: Chemistry, 136, 111 (2000)   DOI
12 K. S. Kim, J. D. Chung, and S. K. Kang, J. KSEE, 25, 1246 (2003)
13 D. W. Shin, B. J. Kim, and Y. T. Kim, Perspectives of Industrial Chemistry, 4, 18 (2001)
14 윤승원, 손건석, 고성혁, 송재원, 이귀영, 배기경, 한국자동차공학회, 춘계학술대회논문집, 172 (2002)
15 J. Sabate, M. A. Anderson, H. Kikkawa, M. Edwards, and C. G. Hill, Jr, J. Catal., 127, 167 (1991)   DOI   ScienceOn
16 S. W. Lee and K. S. Lee, J. Ind. Eng. Chem., 10, 492 (2004)
17 K. S. Jung and H. I. Lee, J. Korean Chem. Soc., 41, 682 (1997)
18 S. Teekateerawej, J. Nishino, and Y. Nosaka, J. Appl. Electrochem., 35, 693 (2005)   DOI   ScienceOn