• Title/Summary/Keyword: Degree of acceleration

Search Result 293, Processing Time 0.026 seconds

A Study on the Optimal Acceleration Profile to Reduce Vibration of PMLSM (PMLSM의 진동저감을 위한 최적의 속도 궤적 생성에 관한 연구)

  • Lee Dong-Yeup;Kim Gyu-Tak;Choi Young-Hyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.351-357
    • /
    • 2005
  • This paper presents vibration minimization of a PMLSM driven feed-slide by using optimized smooth velocity curve with finite jerk. First of all, the PMLSM was designed and made to reduce detent force. Next, a PMLSM driven feed-slide system was mathematically modeled as a 4-degree-of-freedom lumped parameter model. The key idea of our vibration minimization method is to find out the most appropriate smooth velocity(feedrate) curve with finite jerk. The validity of our proposed method has been verified by comparing computer simulation results of the feed-slide model with experimental ones.

A Study for Degradation Mechanism of Plastic Materials (플라스틱 소재의 탈변색 열화 메커니즘 분석)

  • Youn, Hyung-Joon;Jung, Won-Wook;Byun, Doo-Jin;Choi, Gi-Dae
    • Journal of Applied Reliability
    • /
    • v.7 no.4
    • /
    • pp.173-181
    • /
    • 2007
  • Out door exposure to daylight and weather climate conditions can cause adverse effect on the properties of automotive plastic materials. The effects of sunlight exposure, especially ultra violet (UV) radiation, can break down the chemical bonds in a polymeric material. This degradation process is called photo-degradation and ultimately leads to color changes, cracking, chalking, the loss of physical properties and deterioration of other properties. To explore the effect of sunlight exposure on the automotive materials, this study investigated photo-oxidation degree and surface property change of molding parts by analytical methods. For the further study, accelerated weathering test methods are proposed, which can correlate with out door weathering, to predict long term performance of automotive plastic materials.

  • PDF

Rapid Diagnosis Systems Using Accelerometers in Seismic Damage of Tall Buildings

  • Tsuchihashi, Toru;Yasuda, Masaharu
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.207-216
    • /
    • 2017
  • Installing accelerometers in a building is an effective way to know how the building shakes when an earthquake happens. In this paper, we will introduce an example of an analysis that captures the acceleration reduction effect of the vibration damping device using data observed by the accelerometer at Roppongi Hills Mori Tower in Minato-ku, Tokyo, during the Great East Japan Earthquake on March 11, 2011. Moreover, as the latest effort, from the standpoint of a developer who builds and operates a number of high-rise buildings in Japan, where frequent earthquakes are experienced, a system for real-time processing of accelerometer data was developed to instantly diagnose the degree of damage to high-rise buildings, and the actual system of earthquake damage health monitoring is discussed. This system is currently in operation in twelve high-rise buildings including Roppongi Hills Mori Tower.

Robust Control of Robot Manipulators using Visual Feedback (비젼을 이용한 로봇 매니퓰레이터의 강인 제어)

  • Ji, Min-Seok;Lee, Yeong-Chan;Lee, Gang-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.247-250
    • /
    • 2003
  • In this paper, we propose a robust controller for motion control of n-link robot manipulators using visual feedback. The desired joint velocity and acceleration is obtained by the feature-based visual systems and is used in the joint velocity control loop for trajectory control of the robot manipulator. We design a robust controller that compensates for bounded parametric uncertainties of robot dynamics. The stability analysis of robust joint velocity control system is shown by Lyapunov Method. The effectiveness of the proposed method is shown by simulation results on the 5-link robot manipulators with two degree of freedom.

  • PDF

Focused Electron Beam-Controlled Graphene Field-Effect Transistor

  • Kim, Songkil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.360-366
    • /
    • 2020
  • Focused electron beams with high energy acceleration are versatile probes. Focused electron beams can be used for high-resolution imaging and multi-mode nanofabrication, in combination with, molecular precursor delivery, in an electron microscopy environment. A high degree of control with atomic-to-microscale resolution, a focused electron beam allows for precise engineering of a graphene-based field-effect transistor (FET). In this study, the effect of electron irradiation on a graphene FET was systematically investigated. A separate evaluation of the electron beam induced transport properties at the graphene channel and the graphene-metal contacts was conducted. This provided on-demand strategies for tuning transfer characteristics of graphene FETs by focused electron beam irradiation.

Telematics Specific Horizontal Distance Traveled by a Falling Car

  • Shin, Seong-Yoon;Jang, Dai-Hyun;Lee, Hyun-Chang
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.181-186
    • /
    • 2012
  • Telematics services include automatic location tracking for emergency rescue, which is available for use in case of a car accident due to falling off roadways. This paper presents a simulation study on how far a car will fall before it hits the ground if it drops off of a roadway due to an accident or a natural disaster. The greatest horizontal distance the falling car can travel is presented in this paper, based on the assumption that air resistance as well as the direction and degree of acceleration due to gravity is negligible. This paper also presents the depth of the dent caused by the car sinking into the ground, the time it took for the car to fall free, and the velocity at which it travelled and horizontal distance it traveled. In this paper, the damage done to cars that crash into the ground and the dangers thereof are graphically represented.

Modal pushover analysis of self-centering concentrically braced frames

  • Tian, Li;Qiu, Canxing
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.251-261
    • /
    • 2018
  • Self-centering concentrically braced frames (SCCBFs) are emerging as high performance seismically resistant braced framing system, due to the capacity of withstanding strong earthquake attacks and promptly recovering after events. To get a further insight into the seismic performance of SCCBFs, systematical evaluations are currently conducted from the perspective of modal contributions. In this paper, the modal pushover analysis (MPA) approach is utilized to obtain the realistic seismic demands by summarizing the contribution of each single vibration mode. The MPA-based results are compared with the exact results from nonlinear response history analysis. The adopted SCCBFs originate from existing buckling-restrained braced frames (BRBF), which are also analyzed for purpose of comparison. In the analysis of these comparable framing systems, interested performance indices that closely relate to the structural damage degree include the interstory drift ratio, floor acceleration, and absorbed hysteretic energy. The study shows that the MPA approach produces acceptable predictions in comparison to the exact results for SCCBFs. In addition, the high-modes effect on the seismic behavior increases with the building height, and is more evident in the SCCBFs than the BRBFs.

An Experimental Study of the Improvement of Driveability in Vehicle Acceleration Mode (차량 급가속시 운전성 개선을 위한 실험적 연구)

  • 송해박;최윤준;이종화;조한승;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.65-75
    • /
    • 2001
  • Modern vehicles require a high degree of refinement including good driveability. Vehicle driveability, which becomes a key decisive factor f3r marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes experimental procedures which have been developed to measure engine torque and investigate shuffle characteristics. To analyze the vehicle dynamic behavior, fractional torques and inertia mass moment of engine, and drive train were measured. Shuffle characteristics during tip-in condition were investigated in an experimental vehicle at 2nd and 3rd gear stages. It was found that the shuffle characteristics were caused by sudden changes of engine torque and have a different vibration frequency with gear stage variation. Inertia mass moment of engine including flywheel rotation showed a key factor for the shuffle characteristics.

  • PDF

Dynamic Behaviour of Bridges with Hysteric Isolator under Seismic Acceleration (이력 감진장치를 설치한 교량의 지진에 의한 동적 거동)

  • Im, Jung-Soon;Jo, Jae-Byung;An, Young-Gi;Lee, Hee-Mok;Hong, Soon-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.149-156
    • /
    • 1999
  • Numerical studies were carried out to investigate the mechanical properties of competent hysteric isolators for seismic design of bridge. For dynamic analysis, bridges with isolator were simplified to a model with single degree of freedom. The initial stiffness and the yielding forces of hysteric isolators were varied. Seismic responses obtained by time history analysis show that about 4% of the weight acting as the inertia force is appropriate for the yielding force of isolator. And also better results could be achieved with the values about two times the weight per unit displacement for the initial stiffness of isolator.

  • PDF

Tube Shape for Highly Efficient Sonic Compressor (가장 효율적인 음향 압축기의 튜브형상)

  • Chun, Young-Doo;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1455-1460
    • /
    • 2000
  • When a tube is oscillated at a resonant frequency, acoustic variables such as density, velocity, and pressure undergo very large perturbation, often described as nonlinear oscillation. In order to analyze these phenomena, nonlinear governing equation has been drived and solved numerically. Numerical simulations were accomplished to study the effect of the tube shape on the maximum pressure we can obtain. The tubes of cylindrical, conical, and cosine-shape, which have same volume and length, were investigated. Results show that the resonant frequency and patterns of pressure waves strongly depend on not only the tube shape but also the amplitude of driving acceleration. The degree of non-linearity of wave patterns was also measured by the newly defined nonlinear energy ratio of the pressure signals. It was found that the 1/2 cosine-shape tube is more suitable to induce high compression ratio than other shapes.

  • PDF