Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.5.360

Focused Electron Beam-Controlled Graphene Field-Effect Transistor  

Kim, Songkil (School of Mechanical Engineering, Pusan National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.5, 2020 , pp. 360-366 More about this Journal
Abstract
Focused electron beams with high energy acceleration are versatile probes. Focused electron beams can be used for high-resolution imaging and multi-mode nanofabrication, in combination with, molecular precursor delivery, in an electron microscopy environment. A high degree of control with atomic-to-microscale resolution, a focused electron beam allows for precise engineering of a graphene-based field-effect transistor (FET). In this study, the effect of electron irradiation on a graphene FET was systematically investigated. A separate evaluation of the electron beam induced transport properties at the graphene channel and the graphene-metal contacts was conducted. This provided on-demand strategies for tuning transfer characteristics of graphene FETs by focused electron beam irradiation.
Keywords
Focused electron beam induced processing (FEBIP); Graphene; Graphene field-effect transistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Withers, T. H. Bointon, M. Dubois, S. Russo, and M. F. Craciun, Nano Lett., 11, 3912 (2011). [DOI: https://doi.org/10.1021/nl2020697]   DOI
2 J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, ACS Nano, 7, 3661 (2013). [DOI: https://doi.org/10.1021/nn400671z]   DOI
3 B. Cai, L. Huang, H. Zhang, Z. Sun, Z. Zhang, and G. J. Zhang, Biosens. Bioelectron., 74, 329 (2015). [DOI: https://doi.org/10.1016/j.bios.2015.06.068]   DOI
4 P. Jangid, D. Pathan, and A. Kottantharayil, Carbon, 132, 65 (2018). [DOI: https://doi.org/10.1016/j.carbon.2018.02.030]   DOI
5 L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science, 342, 614 (2013). [DOI: https://doi.org/10.1126/science.1244358]   DOI
6 S. J. Randolph, J. D. Fowlkes, and P. D. Rack, Crit. Rev. Solid State Mater. Sci., 31, 55 (2006). [DOI: https://doi.org/10.1080/10408430600930438]   DOI
7 F. J. Urbanos, A. Black, R. Bernardo-Gavito, A. L. Vazquez de Parga, R. Miranda, and D. Granados, Nanoscale, 11, 11152 (2019). [DOI: https://doi.org/10.1039/C9NR02464F]   DOI
8 D. S. Fox, P. Maguire, Y. Zhou, C. Rodenburg, A. O'Neill1, J. N. Coleman, and H. Zhang, Nanotechnology, 27, 195302 (2016). [DOI: https://doi.org/10.1088/0957-4484/27/19/195302]   DOI
9 J. Balakrishnan, G.K.W. Koon, M. Jaiswal, A.H.C. Neto, and B. Ozyilmaz, Nat. Phys., 9, 284 (2013). [DOI: https://doi.org/10.1038/nphys2576]   DOI
10 O. Dyck, S. Kim, E. Jimenez-Izal, A. N. Alexandrova, S. V. Kalinin, and S. Jesse, Small, 14, 1801771 (2018). [DOI: https://doi.org/10.1002/smll.201801771]   DOI
11 O. Dyck, S. Kim, S. V. Kalinin, and S. Jesse, Appl. Phys. Lett., 111, 113104 (2017). [DOI: https://doi.org/10.1063/1.4998599]   DOI
12 J. D. Jones, K. K. Mahajan, W. H. Williams, P. A. Ecton, Y. Mo, and J. M. Perez, Carbon, 48, 2335 (2010). [DOI: https://doi.org/10.1016/j.carbon.2010.03.010]   DOI
13 S. Kim, M. Russell, D. D. K ulkarni, M. Henry, S. Kim, R . R. Naik, A. A. Voevodin, S. S. Jang, V. V. Tsukruk, and A. G. Fedorov, ACS Nano, 10, 1042 (2016). [DOI: https://doi.org/10.1021/acsnano.5b06342]   DOI
14 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). [DOI: https://doi.org/10.1126/science.1102896]   DOI
15 S. V. Kalinin, A. Borisevich, and S. Jesse, Nature, 539, 485 (2016). [DOI: https://doi.org/10.1038/539485a]   DOI
16 M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, and G. Fantner, Beilstein J. Nanotechnol., 3, 597 (2012). [DOI: https://doi.org/10.3762/bjnano.3.70]   DOI
17 W. F. van Dorp, B. van Someren, C. W. Hagen, P. Kruit, and P. A. Crozier, Nano Lett., 5, 1303 (2005). [DOI: https://doi.org/10.1021/nl050522i]   DOI
18 O. Dyck, S. Jesse, and S. V. Kalinin, MRS Bull., 44, 669 (2019). [DOI: https://doi.org/10.1557/mrs.2019.211]   DOI
19 Y. Zhou, J. Jadwiszczak, D. Keane, Y. Chen, D. Yu, and H. Zhang, Nanoscale, 9, 8657 (2017). [DOI: https://doi.org/10.1039/C7NR03446F]   DOI
20 S. Kim, M. Russell, M. Henry, S. S. Kim, R. R. Naik, A. A. Voevodin, S. S. Jang, V. V. Tsukruk, and A. G. Fedorov, Nanoscale, 7, 14946 (2015). [DOI: https://doi.org/10.1039/C5NR04063A]   DOI
21 A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, a nd R. M. Wallace, Appl. Phys. Lett., 99, 122108 (2011). [DOI: https://doi.org/10.1063/1.3643444]   DOI
22 A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol., 3, 210 (2008). [DOI: https://doi.org/10.1038/nnano.2008.67]   DOI