• 제목/요약/키워드: Degrading microorganisms

검색결과 146건 처리시간 0.019초

Toluene의 생물학적 분해능 향상을 위한 계면활성제의 선정 (Surfactant Selection for the Enhanced Biological Degradation of Toluene)

  • 김용식;손영규;김지형;송지현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권4호
    • /
    • pp.26-32
    • /
    • 2005
  • 계면활성제는 소수성 물질(톨루엔)의 물질전달율을 증가시켜 미생물이 있는 액상으로 잘 녹아들어가게 함으로써 미생물에 의한 분해를 증가시킨다. 본 연구에서는 여러 종류의 계면활성제가 존재할 때 톨루엔의 물질전달율과 미생물에 의한 분해가 어떻게 이루어지는지에 대해 알아보았다. 사용한 계면활성제는 다음과 같다: Sodium Oodecyl Sulfate (SOS), TritonX-100, Tween 80, BYK-345 (silicone 계면활성제). 실험결과에 따르면 BYK-345는 critical micelle concentration (CMC)에서 톨루엔의 용해도를 증가시켰다. 하지만, SDS와 TritonX-100는 CMC에서 톨루엔의 용해도를 증가시키지 못했다. 증류수에 계면활성제를 첨가하면 증류수만 있는 경우보다 톨루엔의 물질전달율$(K_La)$이 증가했다. 톨루엔 분해 미생물을 이용한 회분식 실험에서 SOS는 톨루엔의 분해를 감소시켰다. 그 이유는 SDS가 미생물에 독성을 미쳤기 때문일 수도 있고, 기질로서 이용되어서 톨루엔과 경쟁관계에 놓였기 때문일 수도 있다. BYK-345를 계면활성제로 사용한 실험에서도 톨루엔의 분해가 감소했는데 이것은 BYK-345가 미생물의 활성도에 심각한 영향을 미쳤기 때문이다. 하지만, TritonX-100 와 Tween 80의 경우에는 톨루엔의 분해가 크게 감소하지 않았다. 낮은 농도의 TritonX-100의 경우에 오히려 톨루엔의 분해는 증가했다. 이와 같은 결과들을 통해 톨루엔의 생물학적 분해를 위해 가장 적절한 계면활성제는 TritonX-100임을 알 수 있었다.

Levan으로부터 Levanheptaose를 생산하는 미생물의 분리 및 배양 (Isolation and Cultivation of Microorganism Producing Levanheptaose from Levan)

  • 임영순;강수경;강은정;이태호
    • 미생물학회지
    • /
    • 제34권1_2호
    • /
    • pp.37-42
    • /
    • 1998
  • 토양으로부터 levan을 분해하여 단일종의 fructooligosaccharide를 생산하는 새로운 미생물을 분리 선별하여 본 연구의 공시균주로 선택하였다. Levanase 생산을 위한 최적 배지조성은 0.5% levan, 0.3% yeast extract 0.3% $NaNO_3$, 0.1% $K_2HPO_4$, 0.05% NaCl(pH 8.0)이었으며, 500ml용 shaking flask에 배지 50ml를 넣어 $30^{\circ}C$에서 54시간 배양시켰을 때 목적효소의 생산이 최대에 도달하였다. Levanase에 의해 생성되는 생성물은 단일종의 oligo당임이 확인되었으며 측쇄가 많은 levan으로부터는 소량의 측쇄구조를 가진 oligosaccharide로 추정되는 미지의 물질이 부산물로 생성되었다. 생성 oligo당을 순수하게 정제하여 HPLC 및 ESI-MASS로 중합도를 조사한 결과 DP가 7인 levanheptaose임이 판명되었다.

  • PDF

Pseudomonas sp.에 의한 Nonylphenol Ethoxylates의 Kinetics (Biodegradation Kinetics of Nonylphenol Ethoxylates by Pseudomonas sp.)

  • 김수정;이종근;이상준
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.271-278
    • /
    • 1993
  • Nonylphenol ethoxylates-30을 분해할 수 있는 Pseudomonas sp.를 분리, 동정하였다. Nonylphenol ethoxylates-30 의 최적분해조건은 탄소원으로 nonylphenol ethoxylates-30 1.0 g/ι, 질소원으로 ammonium nitrate 0.02 g/ι, pH 7.5, 30였다. 최적분해 조건에서 nonylphenol ethoxylates-30은 배양 30시간 후 89%가 분해되었다. 최적분해조건에서 nonylphenol ethoxylates-30의 초기농도가 각각 100 ppm, 500 ppm, 1000 ppm, 5000 ppm일 때 시간에 따른 분해율을 수식으로 설명할 수 있는 가장 적합한 분해 kinetics는 각각 first order model, Monod no growth model, Monod with growth model로 나타났다.

  • PDF

Responses of Pseudomonas sp. DJ-12 to Pollutant Stresses of Benzoate and 4-Chlorobenzoate

  • Ko, Yeon-Ja;Park, Sang-Ho;Park, Yong-Keun;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권4호
    • /
    • pp.422-428
    • /
    • 1999
  • Aromatic hydrocarbons can be utilized as carbon and energy sources by some microorganisms at lower concentrations. However, they can also act as stresses to these organisms at higher concentrations. Pseudomonas sp. DJ-12 is capable of degrading 0.5 mM concentration of benzoate and 4-chlorobenzoate (4CBA). In this study, the exposure of Pseudomonas sp. DJ-12 to the pollutant stresses of benzoate and 4CBA at various concentrations was comparatively studied for its cellular responses, including survival tolerance, degradability of the aromatics, and morphological changes. Pseudomonas sp. DJ-12 utilized 0.5 to 1.0mM benzoate and 4CBA as carbon and energy sources for growth. However, the organism could not degrade the aromatics at concentrations of 3 mM or higher, resulting in reduced cell viability due to the destruction of the cell envelopes. Pseudomonas sp. DJ-12 cells produced stress-shock proteins such as DnaK and GroEL when treated with benzoate and 4CBA at concentrations of 0.5mM, or higher as sublethal dosage; Yet, there were differing responses between the cells treated with either benzoate or 4CBA. 4CBA affected the degradability of the cells more critically than benzoate. The DnaK and GroEL stress-shock proteins were produced either by 1mM benzoate with 5 min treatment or by higher concentrations after 10min. The proteins were also induced by 0.5mM 4CBA, however, it needed at least 20min treatment or longer. These results indicate that the chlorination of benzoate increased the recalcitrance of the pollutant aromatics and changed the conditions to lower concentrations and longer treatment times for the production of stress-shock proteins. of stress-shock proteins produced by the aromatics at sublethal concentrations functioned interactively between the aromatics for survival tolerance to lethal concentrations.

  • PDF

Identification of Clostridium perfringens AB&J and Its Uptake of Bromophenol Blue

  • Kim, Jeong-Dong;An, Hwa-Yong;Yoon, Jung-Hoon;Park, Yong-Ha;Fusako Kawai;Jung, Chang-Min;Kang, Kook_-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.544-552
    • /
    • 2002
  • Several microorganisms from rat and human feces and lumen fluid of cows were screened for their ability to decolorize the synthetic dyes. Consequently, a novel dye-degrading strain AB&J was isolated. Taxonomic identification including 165 rDNA sequencing and phylogenetic analysis indicated that the isolate had 99.9% homology in its 165 rDNA base sequence with Clostridium perfringens. After 27 h Incubation with the strain, brilliant blue R, bromophenol blue, crystal violet, malachite green, methyl green, and methyl orange were decolorized by about 69.3%, 97.7%, 96.3%, 97.9%, 75.1%, and 97.2%, respectively. The triphenlmethane dye, bromophenol blue, was decolorized extensively by growing Clostridium perfringens AB&J cells in liquid cultures under anaerobic condition, although their growth was strongly inhibited in the initial stage of incubation. This group of dyes is toxic, depending on the concentration used. The dye was significantly decolorized at a relatively lower concentration of below 50 $\mu g \;ml^{-1}$, however, the growth of the cells was mostly suppressed at a dye concentration of 100 $\mu g \;ml^{-1}$. The decolorization activity in cell-free extracts was much higher in cytoplasm than in periplasm and cytoplasmic membrane. Therefore, the enzyme related uptake of bromophenol blue seemed to be localized in cytoplasm. The optimal pH and temperature of bromophenol blue uptake fur decolorization activities were 7.0 and 4$0^{\circ}C$, respectively.

미생물에 의한 불휘발성아민의 분해 (Microbial Degradation of Non-volatile-amine)

  • 이태식;박정흠;이명숙;허성호
    • 한국수산과학회지
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 1990
  • 수산발효식품의 제조, 숙성중에 생성되는 부패성 불휘발성아민의 효과적인 분해방법을 모색하기 위하여 정어리 젓갈에서 아민분해능이 있는 균주를 분리 동정하였고, 이 균주중 가장 아민분해능이 강한 균주를 선별하여 분해최적조건을 실험한 결과를 요약하면 다음과 같다. 1. 정어리젓갈에서 amine분해능이 있는 4균주를 분리하였는데 각각 Pseudomonas aeruginosa, 2종의 Pseudomonas fluorescens 그리고 Enterobacter aeruginosa로 동정되었다. 2. 위의 4균주에 의한 histamine, putrescine 그리고 cadaverine의 분해능은 어느 경우이든 Pseudomonas fluorescens가 가장 강하였고, Enterobacter aerogenes가 가장 약하였다. 3. Pseudomonas fluorescens에 의한 histamine, putrescine 그리고 cadaverine의 분해능은 약간의 차이가 있었으나 온도 $35^{\circ}C$, pH 7.5부근에서 가장 좋았고 식염농도의 증가에 따라서 감소하여 $0\~1\%$ 사이에서 가장 분해능이 좋았다.

  • PDF

부산근해에서 분리한 Bunker Oil 관련화합물 분해세균의 특성 (Characterization of Bunker Oil-Related Compounds Degrading Bacteria Isolated from Pusan Coastal Waters)

  • 최진;김종구;박근태;손홍주;김희구;이상준
    • 한국환경과학회지
    • /
    • 제8권4호
    • /
    • pp.451-456
    • /
    • 1999
  • Microorganisms utilizing petroleum as substrate were screened from the seawater in Pusan coastal area. Among them, fifty strains utilized bunker-A oil as a sole carbon and energy source. Five of these fifty strains were selected to experiment this study. According to the taxonomic characteristics of its morphological, cultural and biochemical properties, the selected stains were named Pseudomonas sp. EL-12, Flavobacterium sp. EL-15, Acinetobacter sp. EL-18, Enterobacter sp. EL-27 and Micrococcus sp. EL-43, respectively. The optimal medium compositions and cultural conditions for assimilation of bunker-A oil by the selected strains were 1.5-2% bunker-A oil, 0.1% $NH_4NO_3$, 1-1.5% $MgSO_4$.$7H_2O$, 0.05-0.15% KCl, 0.1-0.15% $CaCl_2$.$2H_2O$, 2.5-3.5% NaCl, initial pH 8-9, temperature 3$0^{\circ}C$ and aeration, respectively. The utilization and degradation characteristics on the various hydrocarbons by the selected stains were showed that bunker oil, n-alkane and branched alkane compounds were highly activity than cyclic alkane and aromatic hydrocarbon compounds.

  • PDF

Identification of Stenotrophomonas maltophilia LK-24 and its Degradability of Crystal Violet

  • Kim, Jeong-Dong;Yoon, Jung-Hoon;Park, Yong-Ha;Fusako Kawai;Kim, Hyun-Tae;Lee, Dae-Weon;Kang, Kook-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.437-443
    • /
    • 2002
  • A number of soil and wastewater samples were collected from the vicinity of an effluent treatment plant for the chemical industry. Several microorganisms were screened fur their ability to decolorize the triphenylmethane group of dyes. As a result, a novel crystal violet dye-degrading strain LK-24 was isolated. Taxonomic identification including 16S rDNA sequencing and phylogenetic analysis indicated that the isolate had a $99.5\%$ homology in its 16S rDNA base sequence with Stenotrophomonas maltophilia. The triphenylmethane dye, crystal violet, was degraded extensively by growing cells of Stenotrophomonas maltophilia LK-24 in agitated liquid cultures, although their growth was strongly inhibited in the initial stage of incubation. This group of dyes is toxic, depending on the concentration used. The dye was significantly degraded at a relatively lower concentration, below $100{\mu}g\;ml^-1$, yet the growth of the cells was totally suppressed at a dye concentration of $250{\mu}g\;ml^-1$. The degradation products of crystal violet were identified as 4,4'-bis(dimethylamino)-benzophenone and ${\rho}$-dimethylaminophenol by Gas chromatography-Mass spectrometry. The 4,4'-bis(dimethylamino)-benzophenone was easily obtained in a reasonable yield, as it was not metabolized further by S. maltophilia LK-24; however, the ${\rho}$-dimethylaminophenol was not easily identifiable, as it was further metabolized.

Melanin Bleaching and Melanogenesis Inhibition Effects of Pediococcus acidilactici PMC48 Isolated from Korean Perilla Leaf Kimchi

  • Kim, Sukyung;Seo, Hoonhee;Mahmud, Hafij Al;Islam, Md Imtiazul;Sultana, Omme Fatema;Lee, Youngkyoung;Kim, Minhee;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권7호
    • /
    • pp.1051-1059
    • /
    • 2020
  • Overproduction and accumulation of melanin in the skin will darken the skin and cause skin disorders. So far, components that can inhibit tyrosinase, a melanin synthase of melanocytes, have been developed and used as ingredients of cosmetics or pharmaceutical products. However, most of existing substances can only inhibit the biosynthesis of melanin while melanin that is already synthesized and deposited is not directly decomposed. Thus, their effects in decreasing melanin concentration in the skin are weak. To overcome the limitation of existing therapeutic agents, we started to develop a substance that could directly biodegrade melanin. We screened traditional fermented food microorganisms for their abilities to direct biodegrade melanin. As a result, we found that a kimchi-derived Pediococcus acidilactici PMC48 had a direct melanin-degrading effect. This PMC48 strain is a new strain, different from P. acidilactici strains reported so far. It not only directly degrades melanin, but also has tyrosinase-inhibiting effect. It has a direct melanin-decomposition effect. It exceeds existing melanin synthesis-inhibiting technology. It is expected to be of high value as a raw material for melanin degradation drugs and cosmetics.

The Importance of Weathered Crude Oil as a Source of Hydrocarbonoclastic Microorganisms in Contaminated Seawater

  • Sheppard, Petra J.;Simons, Keryn L.;Kadali, Krishna K.;Patil, Sayali S.;Ball, Andrew S.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권9호
    • /
    • pp.1185-1192
    • /
    • 2012
  • This study investigated the hydrocarbonoclastic microbial community present on weathered crude oil and their ability to degrade weathered oil in seawater obtained from the Gulf St. Vincent (SA, Australia). Examination of the native seawater communities capable of utilizing hydrocarbon as the sole carbon source identified a maximum recovery of just $6.6{\times}10^1\;CFU/ml$, with these values dramatically increased in the weathered oil, reaching $4.1{\times}10^4\;CFU/ml$. The weathered oil (dominated by > $C_{30}$ fractions; $750,000{\pm}150,000mg/l$) was subject to an 8 week laboratory-based degradation microcosm study. By day 56, the natural inoculums degraded the soluble hydrocarbons (initial concentrations $3,400{\pm}700mg/l$ and $1,700{\pm}340mg/l$ for the control and seawater, respectively) to below detectable levels, and biodegradation of the residual oil reached 62% ($254,000{\pm}40,000mg/l$) and 66% ($285,000{\pm}45,000mg/l$) in the control and seawater sources, respectively. In addition, the residual oil gas chromatogram profiles changed with the presence of short and intermediate hydrocarbon chains. 16S rDNA DGGE sequence analysis revealed species affiliated with the genera Roseobacter, Alteromonas, Yeosuana aromativorans, and Pseudomonas, renowned oil-degrading organisms previously thought to be associated with the environment where the oil contaminated rather than also being present in the contaminating oil. This study highlights the importance of microbiological techniques for isolation and characterisation, coupled with molecular techniques for identification, in understanding the role and function of native oil communities.