• 제목/요약/키워드: Degraded Material

검색결과 368건 처리시간 0.025초

MORPHOLOGICAL STUDY BY SCANNING ELECTRON MICROSCOPY OF RUMEN DEGRADATION OF WHEAT STRAW TREATED WITH AMMONIA AND SULPHUR DIOXIDE

  • Song, Y.H.;Shimojo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제6권2호
    • /
    • pp.265-270
    • /
    • 1993
  • Ammonia and/or sulphur dioxide treated and untreated wheat leaf sheaths were compared for cell wall digestion by incubation with rumen liquor for 24 and 48 hours. Scanning electron microscope (SEM) was used to study the relative rate and extent of cell wall digestion. Treated wheat straw leaf sheaths were distorted, with more distortion observed in ammonia and sulphur dioxide combined treatment than any other treatment. Rumen liquor digestion for 24 hours of untreated leaf sheath showed disrupted phloem, partially ruptured parenchyma and vascular tissues and further partially distorted inner bundle sheaths and vascular bundle after 48 hours incubation. Sulphurated leaf sheaths showed extensive degraded parenchyma and sclerenchyma material in 24 hours incubation, however, all tissues were irregulary shaped in 48 hours incubation. In ammoniation, epidermal cell walls and small vascular bundles began to disintegrate by 24 hours incubation, extensively changed structure and degraded epidermal tissue by 48 hours incubation. Combination treatment of leaf sheaths degraded all cell walls of parenchyma, phloem and vascular bundle by 24 hours incubation, however, structures only of inner bundles sheath with extended land, sclerenchyma and cutinized epidermal cell walls remained.

12Cr 합금강의 부식특성 및 인공열화된 12Cr합금강의 피로특성 (Corrosive Characterisics of 12Cr Alloy Steel and Fatigue Characteristics of the Artificially Degraded 12Cr Alloy Steel)

  • 조선영;김철한;배동호
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.965-971
    • /
    • 2001
  • To estimate the reliability of 12Cr alloy steel, the material of turbine blade in the steam power plant, Its corrosion susceptibility and fatigue characteristics in NaCl and Na$_2$SO$_4$solution with the difference of concentration and temperature was investigated. The polarization tests recommended in ASTM G5 standard for corrosion susceptibility in the various corrosive solutions was estimated. It showed that the higher temperature, the faster corrosion rates and corrosion rates were the fastest in 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution. From these results, the degradation conditions were determined in distilled water, 3.5 wt.% NaCl and 1M Na$_2$SO$_4$solution at room temperature, 60$\^{C}$ and 90$\^{C}$ during 3, 6 and 9 months. Its surface had a few pits for long duration. But, it was not susceptible in sulfide and chloride condition of several temperatures. If the degraded 12Cr alloy steel and non-degraded one were compared with fatigue characteristics, Any differences were not found regardless of temperature and degradation period.

Parameter calibrations and application of micromechanical fracture models of structural steels

  • Liao, Fangfang;Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.153-174
    • /
    • 2012
  • Micromechanical facture models can be used to predict ductile fracture in steel structures. In order to calibrate the parameters in the micromechanical models for the largely used Q345 steel in China, uniaxial tensile tests, smooth notched tensile tests, cyclic notched bar tests, scanning electron microscope tests and finite element analyses were conducted in this paper. The test specimens were made from base metal, deposit metal and heat affected zone of Q345 steel to investigate crack initiation in welded steel connections. The calibrated parameters for the three different locations of Q345 steel were compared with that of the other seven varieties of structural steels. It indicates that the toughness index parameters in the stress modified critical strain (SMCS) model and the void growth model (VGM) are connected with ductility of the material but have no correlation with the yield strength, ultimate strength or the ratio of ultimate strength to yield strength. While the damage degraded parameters in the degraded significant plastic strain (DSPS) model and the cyclic void growth model (CVGM) and the characteristic length parameter are irrelevant with any properties of the material. The results of this paper can be applied to predict ductile fracture in welded steel connections.

후속열처리 공정을 이용한 FD Strained-SOI 1T-DRAM 소자의 동작특성 개선에 관한 연구

  • 김민수;오준석;정종완;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.35-35
    • /
    • 2009
  • Capacitorless one transistor dynamic random access memory (1T-DRAM) cells were fabricated on the fully depleted strained-silicon-on-insulator (FD sSOI) and the effects of silicon back interface state on buried oxide (BOX) layer on the memory properties were evaluated. As a result, the fabricated 1T-DRAM cells showed superior electrical characteristics and a large sensing current margin (${\Delta}I_s$) between "1" state and "0" state. The back interface of SOI based capacitorless 1T-DRAM memory cell plays an important role on the memory performance. As the back interface properties were degraded by increase rapid thermal annealing (RTA) process, the performance of 1T-DRAM was also degraded. On the other hand, the properties of back interface and the performance of 1T-DRAM were considerably improved by post RTA annealing process at $450^{\circ}C$ for 30 min in a 2% $H_2/N_2$ ambient.

  • PDF

EPR의 열화에 의한 충.방전 전류 특성에 관한 연구 (A Study on Properties of Charge & Discharge Current by Degrade in EPR)

  • 이성일
    • 한국전기전자재료학회논문지
    • /
    • 제21권7호
    • /
    • pp.679-685
    • /
    • 2008
  • This paper describes the degraded properties of between the charge and discharge current for ${\gamma}$-ray irradiated in electric power cable rubbers using in nuclear power generating station. The charge and discharge current of degradation in EPR(Ethylene Propylene Rubber), which were irradiated with the radiant capacity of 0.033 Mrad/h, have been measured in order to investigate the influence of the atmosphere(in amount of reinforcing agent, moisture absorption and heat treatment) on electrical properties. When ${\gamma}$-ray were irradiated on the EPR with more reinforcing agent from 4 to 40 Phr, charge and discharge currents was increase due to the amount of reinforcing agent. It was verified that the discharging and charging currents irradiated by ${\gamma}$-ray were higher than those that was not irradiated. The amount of the degraded current was more after moisture absorption than before moisture absorption. The charge and discharge current after heat treatment was similar to that of before heat treatment and it was decreased with the time elapsed. As these properties related with ${\gamma}$-ray irradiation dose, it is suggested that these properties can be utilized as a index of irradiation degradation.

수 원자층 두께의 MoS2 채널을 가진 전계효과 트랜지스터의 게이트 전압 스트레스에 의한 I-V 특성 변화 (The Change of I-V Characteristics by Gate Voltage Stress on Few Atomic Layered MoS2 Field Effect Transistors)

  • 이형규;이기성
    • 한국전기전자재료학회논문지
    • /
    • 제31권3호
    • /
    • pp.135-140
    • /
    • 2018
  • Atomically thin $MoS_2$ single crystals have a two-dimensional structure and exhibit semiconductor properties, and have therefore recently been utilized in electronic devices and circuits. In this study, we have fabricated a field effect transistor (FET), using a CVD-grown, 3 nm-thin, $MoS_2$ single-crystal as a transistor channel after transfer onto a $SiO_2/Si$ substrate. The $MoS_2$ FETs displayed n-channel characteristics with an electron mobility of $0.05cm^2/V-sec$, and a current on/off ratio of $I_{ON}/I_{OFF}{\simeq}5{\times}10^4$. Application of bottom-gate voltage stresses, however, increased the interface charges on $MoS_2/SiO_2$, incurred the threshold voltage change, and degraded the device performance in further measurements. Exposure of the channel to UV radiation further degraded the device properties.

재질 열화와 프레팅 피로거동 평가에 관한 연구 (A Study on Material Degradation and Fretting Fatigue Behavior)

  • 권재도;최성종;성상석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.157-162
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range ken $290^{\circ}C{\sim}390^{\circ}C$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 1800hr at $430^{\circ}C$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

  • PDF

초음파 주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가 (Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Frequency Analysis Spectrum Method)

  • 정민화;이상국
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.90-98
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions like high temperature and high pressure for an extended period time. Such material degradation lead to various component faliures causing serious accidents at the plant. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for their preparing creep degraded specimens have been carried out for the purpose of nondestructive evaluation for creep damage which can occur in high-temperature pipelline of fossil power plant. As a result of ultrasonic tests for crept specimens, we confirmed that the high frequency side spectra decrease and central frequency components shift to low frequency bans, and bandwiths decrease as increasing creep damage in backwall echoes.

  • PDF

해양으로부터 fucoidan 분해세균의 분리 및 특성 (Isolation and Characteristics of Fucoidan Degrading Bacterium from Marine)

  • 이유리;임종민;김기영;문성배;곽인석;손재학
    • 생명과학회지
    • /
    • 제22권12호
    • /
    • pp.1724-1728
    • /
    • 2012
  • Ecklonia cava로부터 얻어진 fucoidan을 분해하는 해양세균은 해수로부터 분리하였다. 이 균주의 조효소는 pH8과 $50^{\circ}C$에서 fucoidan을 효율적으로 분해하였다. Crude fucoidanase는 1% (w/v) fucoidan 반응액에서 24시간 내에 약 7.1%를 가수분해하였으며 반응산물로서 endo-type 가수분해에 의한 oligosaccharide를 생산하였다. 16S rRNA 유전자 염기서열분석과 생화학적 시험의 결과로부터 SB 1493균주는 잠정적으로 Pseudoalteromonas sp.로 동정하였다.

ANFIS 분류기법을 이용한 부분방전원의 분류 (PD classification by using ANFIS method)

  • 박성희;윤재훈;김병철;임기조;강성화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.467-467
    • /
    • 2007
  • Solid insulation exposed to voltage is degraded by electrical tree process. And the degradation of the insulation is accelerated by voltage application. For this experimental, specimen of electrical tree model is made by XLPE (cross-linked polyethylene). And the size of the specimen is $7^*5^*7mm^3$. Distance between needle and plane is 2 mm. Voltages applied to acceleration test are ranged 12 to 15 kV. And distribution characteristic of degraded stage is studied too. By PD detecting and data processing, discharge data was acquired from PD detecting system (Biddle instrument). The system presents statistical distribution of phase resolved. Moreover, the processing time of electrical tree is recorded to know the speed of degradation according to voltage. Finally, it's used PD classification by ANFIS method.

  • PDF