• 제목/요약/키워드: Degradation characteristic

검색결과 407건 처리시간 0.022초

열화특성치가 와이블분포를 따르는 경우 두 가지 스트레스 변수를 고려한 가속열화시험의 최적 설계 (Optimal Design of Accelerated Degradation Tests with Two Stress Variables in the Case that the Degradation Characteristic Follows Weibull Distribution)

  • 임헌상;김용수
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권2호
    • /
    • pp.87-98
    • /
    • 2013
  • Accelerated degradation tests (ADTs) measuring failure-related degradation characteristic at the accelerated condition are widely used to assess the reliability of highly reliable products. Often, however, little degradation could be observed even in single-stress ADTs due to the high reliability of test unit, and as a result poor estimate of the reliability may be obtained. ADTs with multiple stress variables can be employed to overcome such difficulties. In this paper, optimal ADT plans with two stress variables are developed assuming that the degradation characteristic follows Weibull distribution by determining the stress levels, the proportion of test units allocated to each stress level such that the asymptotic variance of the maximum likelihood estimator of the q-th quantile of the lifetime distribution at the use condition is minimized.

성능특성치의 열화가 와이블 분포를 따를 때 가속열화시험을 활용한 신뢰성 샘플링검사계획의 개발 (Development of Reliability Acceptance Sampling Plan for the Case where the Degradation Quantity of the Performance Characteristic follows Weibull Distribution based on the Accelerated Degradation Test)

  • 임헌상;박재훈;성시일
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권2호
    • /
    • pp.122-129
    • /
    • 2018
  • Purpose: This article develops an optimal reliability acceptance sampling plan for the case where the degradation quantity of the performance characteristic follows Weibull distribution. Method: For developing reliability acceptance sampling plans, the sample size and the acceptance constant are determined based on the accelerated characteristic of the test condition and the product. Results: The sample size and the acceptance constant are provided such that the constraints of the producer and the consumer risks are satisfied. Conclusion: Reliability acceptance sampling plans based on the accelerated degradation test method can be used for the quality control within a resonable amount of cost and time. In this article. an optimal reliability sampling plans are newly developed for this purpose.

성능특성치의 열화가 대수정규분포를 따를 때의 가속열화시험 모형 개발 (Planning of Accelerated Degradation Tests: In the Case Where the Performance Degradation Characteristic Follows the Lognormal Distribution)

  • 임헌상;성시일
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제18권1호
    • /
    • pp.80-86
    • /
    • 2018
  • Purpose: This article provides a mathematical model for the accelerated degradation test when the performance degradation characteristic follows the lognormal distribution. Method: For developing test plans, the total number of test units and the test time are determined based on the minimization of the asymptotic variance of the q-th quantile of the lifetime distribution at the use condition. Results: The mathematical model for the accelerated degradation test is provided. Conclusion: Accelerated degradation test method is widely used to evaluate the product lifetime within a resonable amount of cost and time. In this article. a mathematical model for the accelerated degradation test method is newly developed for this purposes.

탈질촉매 내 열화특성과 유동상태에 관한 연구 (A Study on Degradation Characteristic and Flow Behavior in De-NOx Catalyst)

  • 황승민
    • 한국환경과학회지
    • /
    • 제19권9호
    • /
    • pp.1093-1101
    • /
    • 2010
  • In this study, the indirect correlation of degradation characteristic and flow behavior in the de-NOx catalyst is investigated experimentally. The inner flow behavior in the de-NOx catalyst is varied from turbulent flow to laminar flow and the degradation of the de-NOx catalyst is remarkably affected by the inner flow. The degradation of the catalyst is increased in the upstream region near the inlet because injected turbulent flow enhances the adhesion of ash particle on the catalyst surface. The degradation of the catalyst near the inlet also governs the overall efficiency of the catalyst. The amount of adhered ash particles on the catalyst surface decreases as they progress downstream. This is due to the inner flow transition from turbulent flow to laminar flow.

열화가 Wiener process를 따르는 경우의 비용을 고려한 가속열화시험 계획 (Optimal Design of Accelerated Degradation Tests under the Constraint of Total Experimental Cost in the Case that the Degradation Characteristic Follows a Wiener Process)

  • 임헌상
    • 품질경영학회지
    • /
    • 제40권2호
    • /
    • pp.117-125
    • /
    • 2012
  • For the highly reliable products, an accelerated degradation test (ADT) is a useful tool which has been employed in industry to obtain reliability-related information within an affordable amount of time and cost. In an ADT, as all other reliability tests, it is important to carefully design the ADT beforehand to obtain estimates of the quantities of interest as precisely as possible. In this paper, optimal ADTs are developed assuming that the constant-stress loading method is employed and the degradation characteristic follows a Wiener process. Under the constraint that the total cost does not exceed a pre-specified budget, the stress levels, the number of test units allocated to each stress level and the number of measurement (termination time) are determined such that the asymptotic variance of the maximum likelihood estimator of the q-th quantile of the lifetime distribution at the use condition is minimized.

플라스틱 작품 보존을 위한 열화 특성 연구 (Study on Degradation Characteristic of Plastic Artwork for Conservation)

  • 유지아;조하진;한예빈;이현주;이상진;정용재
    • 보존과학회지
    • /
    • 제31권2호
    • /
    • pp.87-94
    • /
    • 2015
  • 플라스틱 작품은 다양한 환경조건에 따라 갈라짐, 색변화, 백화현상 등 재질손상이 급속하게 발생될 수 있다. 특히 현대예술작품 중 대형 플라스틱 작품의 경우 옥외에 전시되는 경우가 많으며, 이에 강한 햇빛과 높은 습도, 강우 등 물리적, 화학적 손상 요인에 지속적으로 노출되어 있다. 따라서 본 연구에서는 polypropylene(PP), polystyrene(PS), polyetylene(PE), polyvinyl chloride(PVC), polyurethane(PU)의 5가지 범용 플라스틱 표준 재료를 고온, 자외선, 그리고 고온 및 자외선 복합 조건에 노출시킴으로써 환경조건에 따른 플라스틱 종류별 열화 양상을 평가하였다. 그 결과 인공열화에 따른 PP, PS, PE에서 육안 변화가 크게 나타났으며 특히 PP, PS는 가장 큰 색차가 발생하였다. 인장강도와 표면접촉각 측정결과 PP는 큰 변화가 없었고 PS는 가장 많이 감소되는 것을 확인하였다. 광열화에 가장 취약한 재질은 PP와 PS, 내광성이 가장 좋은 재질은 PVC와 PU로 확인되었다. 또한 열화 조건 중 자외선 조건과 고온 및 자외선 복합 조건에서 가장 심한 열화 정도가 확인되었다. 이는 자외선은 직접적 열화 조건으로 작용하였으며 고온의 경우 플라스틱 결합에너지를 끊을 만한 충분한 에너지가 되지 못하기 때문에 순수한 열적에너지로서의 열화 조건보다는 열화 촉매로서 작용한 것으로 판단된다. 이러한 결과는 향후 플라스틱 작품의 재질별 손상원인을 규명하고 보존방안 수립을 위한 기초자료로 활용될 것으로 기대된다.

낙구식 점도계를 이용한 점탄성 유체의 특성시간에 관한 실험적 연구 (An experimental study on the characteristic times of viscoelastic fluids by falling ball viscometer)

  • 전찬열;유상신
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.241-250
    • /
    • 1990
  • 본 연구에서는 낙구식 점도계를 이용하여 낮은 농도의 용액을 실험할 때 종말 속도측정의 어려움을 해결하기 위하여 레이저와 특수 타이머를 설치하였으며 정확한 특성시간을 결정하기 위하여 실린더 내부의 시험유체를 교란시키지 않고, 떨어뜨린 구 를 회수하는 장치를 제작하였다. 또한 주로 rheogoniometer에 의존하던 영 전단률 점성계수를 측정하기 위하여 속이 빈 알루미늄 구(hollow aluminium ball)의 밀도를 시험 유체와 거의 같은 정도까지 변화시켜가며 종말 속도를 측정하였으며 점탄성 유체 로써 Separan AP-273의 낮은 농도인 300에서 2000wppm까지의 저농도 용액에 대한 특성 시간을 여러모델에 의하여 실험적으로 결정하고 저농도 폴리머 용액에서 퇴화로 인한 점탄성유체의 특성 변화를 분석하였다.

열화되는 성능 파라메터를 가지는 시스템의 신뢰성 예측에 관한 연구 (A Study on Reliability Prediction of System with Degrading Performance Parameter)

  • 김연수;정영배
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.142-148
    • /
    • 2015
  • Due to advancements in technology and manufacturing capability, it is not uncommon that life tests yield no or few failures at low stress levels. In these situations it is difficult to analyse lifetime data and make meaningful inferences about product or system reliability. For some products or systems whose performance characteristics degrade over time, a failure is said to have occurred when a performance characteristic crosses a critical threshold. The measurements of the degradation characteristic contain much useful and credible information about product or system reliability. Degradation measurements of the performance characteristics of an unfailed unit at different times can directly relate reliability measures to physical characteristics. Reliability prediction based on physical performance measures can be an efficient and alternative method to estimate for some highly reliable parts or systems. If the degradation process and the distance between the last measurement and a specified threshold can be established, the remaining useful life is predicted in advance. In turn, this prediction leads to just in time maintenance decision to protect systems. In this paper, we describe techniques for mapping product or system which has degrading performance parameter to the associated classical reliability measures in the performance domain. This paper described a general modeling and analysis procedure for reliability prediction based on one dominant degradation performance characteristic considering pseudo degradation performance life trend model. This pseudo degradation trend model is based on probability modeling of a failure mechanism degradation trend and comparison of a projected distribution to pre-defined critical soft failure point in time or cycle.

Ti-Ni합금의 반복변형특성에 미치는 pre-strain의 효과 (The Effect of Pre-strain on Cyclic Deformation Characteristic of Ti-Ni Alloy)

  • 박영철;조용배;허선철
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.101-110
    • /
    • 1995
  • In SMA(Shape Memory Alloy), the degradation by fatigue is one of the most important problems to be overcome, when SMA is used for robot-actuator materials. The actuator is operated repetitively for long time and its repeating operation develops the fatigue degradation of SMA. The fatigue degradation changes the transformation temperature and deformation behavior and results in inaccurate operation and deformation which results form repeating operation is to be investigated in advance and the scheme to resolve those problems have to be made for the design of actuator. In this paper, for the improvement of the fatigue degradation by repetive movement and better control of the correct movement by the stability of martensite transformation in the development of Robots actuator, Pre-strain(0, 1.5, 5, 8%) are loaded in the specimens and fatigue testing were carried out by the method of heating and cooling in direct condition. From the results of these experiments, the effect on pre-strain which affect the transformation characteristic and fatigue degradation phenomena were correctly investigated.

  • PDF

강건 실험계획법을 이용한 열화자료의 분석 (Analysis of Degradation Data Using Robust Experimental Design)

  • 서순근;하천수
    • 품질경영학회지
    • /
    • 제32권1호
    • /
    • pp.113-129
    • /
    • 2004
  • The reliability of the product can be improved by making the product less sensitive to noises. Especially, it Is important to make products robust against various noise factors encountered in production and field environments. In this paper, the phenomenon of degradation assumes a simple random coefficient degradation model to present analysis procedures of degradation data for robust experimental design. To alleviate weak points of previous studies, such as Taguchi's, Wasserman's, and pseudo failure time methods, novel techniques for analysis of degradation data using the cross array that regards amount of degradation as a dynamic characteristic for time are proposed. Analysis approach for degradation data using robust experimental design are classified by assumptions on parametric or nonparametric degradation rate(or slope). Also, a simulation study demonstrates the superiority of proposed methods over some previous works.