• Title/Summary/Keyword: Degradation Model

Search Result 1,579, Processing Time 0.028 seconds

Analysis of Luminance Degradation characteristics of OLED using the Hotplate (핫플레이트를 이용한 OLED의 휘도열화특성 분석)

  • Kim, Yun-Cheol;Lee, Duek-Jung;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2016
  • Purpose: The purpose of this study is to propose efficiency of equipment testing the luminance degradation of OLED. Methods: The degradation model of Exponential model and Stretched exponential model is analyzed by goodness of fit test using calculated R-square. The degradation model having the higher R-square is finally selected. Scale parameter and Shape parameter using the selected degradation model is estimated. The activation energy and current density n using peck model among the accelerated model is estimated. the estimated parameters are analyzed by t-test. Results: The results of t-test show that the estimated parameters on chamber and hotplate are equal statistically. we can know the similarity of the luminance degradation rate and degradation pattern on chamber and hotplate. Conclusion: The result of the degradation test on chamber and hotplate is similar. when the accelerated degradation test on the panel of the OLED TV is performed, hotplate is requiring less samples, time and cost than chamber. so the accelerated degradation test on the panel of the OLED TV using the hoplate is efficient of time and cost.

Modeling and Analysis of Accelerated Degradation Testing Data for a Solid State Drive (SSD) (Solid State Drive(SSD)에 대한 가속열화시험 데이터 모델링 및 분석)

  • Mun, Byeong Min;Choi, Young Jin;Ji, You Min;Lee, Yong Jung;Lee, Keun Woo;Na, Han Joo;Yang, Joong Seob;Bae, Suk Joo
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • Purpose: Accelerated degradation tests can be effective in assessing product reliability when degradation leading to failure can be observed. This article proposes an accelerated degradation test model for highly reliable solid state drives (SSDs). Methods: We suggest a nonlinear mixed-effects (NLME) model to degradation data for SSDs. A Monte Carlo simulation is used to estimate lifetime distribution in accelerated degradation testing data. This simulation is performed by generating random samples from the assumed NLME model. Conclusion: We apply the proposed method to degradation data collected from SSDs. The derived power model is shown to be much better at fitting the degradation data than other existing models. Finally, the Monte Carlo simulation based on the NLME model provides reasonable results in lifetime estimation.

Planning of Accelerated Degradation Tests: In the Case Where the Performance Degradation Characteristic Follows the Lognormal Distribution (성능특성치의 열화가 대수정규분포를 따를 때의 가속열화시험 모형 개발)

  • Lim, Heonsang;Sung, Si-Il
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2018
  • Purpose: This article provides a mathematical model for the accelerated degradation test when the performance degradation characteristic follows the lognormal distribution. Method: For developing test plans, the total number of test units and the test time are determined based on the minimization of the asymptotic variance of the q-th quantile of the lifetime distribution at the use condition. Results: The mathematical model for the accelerated degradation test is provided. Conclusion: Accelerated degradation test method is widely used to evaluate the product lifetime within a resonable amount of cost and time. In this article. a mathematical model for the accelerated degradation test method is newly developed for this purposes.

Towards improved models of shear strength degradation in reinforced concrete members

  • Aschheim, Mark
    • Structural Engineering and Mechanics
    • /
    • v.9 no.6
    • /
    • pp.601-613
    • /
    • 2000
  • Existing models for the shear strength degradation of reinforced concrete members present varied conceptual approaches to interpreting test data. The relative superiority of one approach over the others is difficult to determine, particularly given the sparseness of ideal test data. Nevertheless, existing models are compared using a suite of test data that were used for the development of one such model, and significant differences emerge. Rather than relying purely on column test data, the body of knowledge concerning degradation of concrete as a material is considered. Confined concrete relations are examined to infer details of the degradation process, and to establish a framework for developing phenomenologically-based models for shear strength degradation in reinforced concrete members. The possibility of linking column shear strength degradation with material degradation phenomena is explored with a simple model. The model is applied to the results of 7 column tests, and it is found that such a link is sustainable. It is expected that models founded on material degradation phenomena will be more reliable and more broadly applicable than the current generation of empirical shear strength degradation models.

Quantized CNN-based Super-Resolution Method for Compressed Image Reconstruction (압축된 영상 복원을 위한 양자화된 CNN 기반 초해상화 기법)

  • Kim, Yongwoo;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.71-76
    • /
    • 2020
  • In this paper, we propose a super-resolution method that reconstructs compressed low-resolution images into high-resolution images. We propose a CNN model with a small number of parameters, and even if quantization is applied to the proposed model, super-resolution can be implemented without deteriorating the image quality. To further improve the quality of the compressed low-resolution image, a new degradation model was proposed instead of the existing bicubic degradation model. The proposed degradation model is used only in the training process and can be applied by changing only the parameter values to the original CNN model. In the super-resolution image applying the proposed degradation model, visual artifacts caused by image compression were effectively removed. As a result, our proposed method generates higher PSNR values at compressed images and shows better visual quality, compared to conventional CNN-based SR methods.

Service Life Prediction of Components or Materials Based on Accelerated Degradation Tests (가속열화시험에 의한 부품·소재 사용수명 예측에 관한 연구)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.103-111
    • /
    • 2017
  • Purpose: Accelerated degradation tests can speed time to market and reduce the test time and costs associated with long term reliability tests to verify the required service life of a product or material. This paper proposes a service life prediction method for components or materials using an accelerated degradation tests based on the relationships between temperature and the rate of failure-causing chemical reaction. Methods: The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed and least square estimation is used to estimate model parameters from the degradation model. Results: Methods of obtaining acceleration factors and predicting service life using the degradation model are presented and a numerical example is provided. Conclusion: Service life prediction of a component or material is possible at an early stage of the degradation test by using the proposed method.

Failure-Time Estimation from Nonlinear Random-Coefficients Model: PDP Degradation Analysis (PDP 열화분석 예제를 통한 랜덤계수모델에서의 고장시간분포 추정)

  • Bae, Suk-Joo;Kim, Seong-Joon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.181-191
    • /
    • 2006
  • As an alternative to traditional life testing, degradation tests can be effective in assessing product reliability when measurements of degradation leading to failure can be observed. This article proposes a new model to describe the nonlinear degradation paths caused by nano-contamination for plasma display panels (PDPs) : a bi-exponential model with random coefficients. A sequential likelihood ratio test was executed to select random effects in the nonlinear model. Analysis results indicate that the reliability estimation can be improved substantially by using the nonlinear random-coefficients model to incorporate both inherent degradation characteristics and contamination effects of impurities for PDP degradation paths.

  • PDF

LED 칩 열화특성에 적합한 열화모델 기반의 수명예측 시스템 구현

  • Yu, Gi-Hun;Lee, Jae-Hun;Kim, Dal-Seok;Lee, Mu-Seok;Yun, Yang-Gi;Han, Ji-Hun;Jang, Jung-Sun
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.79-85
    • /
    • 2011
  • LED(Light Emitting Diode) is a powerful device used in applications as diverse as replacements for aviation lighting, automotive lighting as well as in traffic signals. This study is to propose a prediction system based on the degradation model of LED which is determined by combining scale and shape parameter. The degradation model is analysed goodness of fit test using calculated R-square, and is compared with previous models. A LED prediction system using degradation model is developed to automate estimations of degradation parameters and lifetimes.

  • PDF

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Amir Hossein Kamalinia;Ataollah Rabiee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4561-4569
    • /
    • 2023
  • A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

Development of a Numerical Model for Evaluation of Long-Term Mechanical Degradation of Shotcrete Lining in Tunnels (터널 숏크리트 라이닝의 장기 내구성 저하 평가를 위한 수치모델의 개발)

  • Shin Hyu-Soung;Lim Jong-Jin;Kim Dong-Gyu;Lee Gyu-Phil;Bae Gyu-Jin
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.251-258
    • /
    • 2005
  • In this study, a new concept for simulating a long-term mechanical degradation mechanism of shotcrete in tunnels has been proposed. In fact, it is known that the degradation takes place mainly by internal cracks and reduced stiffness, which results mainly from volume expansion of shotcrete and corrosion of cement materials, respectively. This degradation mechanism of shotcrete in tunnels appears similar to those of the most kinds of chemical reactions in tunnels. Therefore, the mechanical degradation induced by a kinds of chemical reaction was generalized and mathematically formulated in the framework of thermodynamics. The numerical model was implemented to a 3D finite element code, which can be used to simulate behaviour of shotcrete structures undergoing external forces as well as chemical degradation in time. A number of illustrative examples were given to show the feasibility of the model in tunnel designs with consideration of long-term degradation effect of shotcrete quantitatively for increase of long-term safety of tunnels.

  • PDF