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Abstract

As an alternative to traditional life testing, degradation tests can be effective in
assessing product reliability when measurements of degradation leading to failure can be
observed. This article proposes a new model to describe the nonlinear degradation paths
caused by nano—contamination for plasma display panels (PDPs): a bi—exponential model
with random coefficients. A sequential likelihood ratio test was executed to select
random effects in the nonlinear model. Analysis results indicate that the reliability
estimation can be improved substantially by using the nonlinear random—-coefficients
model to incorporate both inherent degradation characteristics and contamination effects
of impurities for PDP degradation paths.
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1. Introduction

Due to extremely high product reliability, failure information is often sparse in the
manufacture of display devices, such as plasma display panels (PDPs), light emitting
diodes (LEDs), and vacuum fluorescent displays (VFDs). However, covariate
information indicating degradation has become increasingly available in all facets of
reliability modeling. Not only can degradation measurements lead to improved
reliability analysis over standard failure time analysis (Lu and Meeker, 1993), but they
provide additional information related to failure mechanisms of test units. Meeker and
Escobar (1998) provided a comprehensive guide to degradation analysis for various
life tests including accelerated life test (ALT).

The general approach used to derive lifetime distribution from degradation testing is
to first estimate the coefficients in the pre-specified degradation model using all of
the degradation data, then predict the lifetime distribution for the products based on
the estimated model coefficients linked with the failure-times. In some simple cases
where the degradation path is linear, we can easily compute the lifetime distribution
expressed as a closed-form. However when the degradation path is nonlinear and
more than one of the coefficients are characterized as random, a closed form
expression will not exist, hence the lifetime distribution must be evaluated numerically
using simulation and intensive resampling methods such as bootstrap procedures (Lu
and Meeker, 1993)

In this article, we investigate how to accurately estimate failure-time distribution
from nonlinear degradation paths caused by nano-contamination for plasma display
panels (PDPs), where the coefficients in the degradation model vary significantly
between item to item.

The paper is organized as follows. In Section 2 the degradation physics of PDP
brightness are illustrated and in Section 3 a nonlinear random-coefficients model is
introduced. Estimation is based on approximation methods for maximizing the
likelihood function of the degradation data. In Section 4 a failure-time distribution is
derived based on the estimated degradation paths. In Section 5 the PDP degradation
data are analyzed following the proposed approaches. Some concluding remarks are
presented in Section 6.

2. Degradation Physics of the PDP

The plasma display panel (PDP) is a flat, self—emissive panel display with excellent
image quality. Due to its wide—viewing angle and large sized screen, the PDP is
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becoming a leading display device for both business and consumer display applications.
The most common PDP in production today is the two—substrate, three—electrode
surface discharge alternating—current (AC) structure, which is shown in Figure 1.
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Figure 1 : Basic Structure of an alternating—current(AC) plasma display
panel (PDP).

The display characteristics of an AC PDP are defined by the degradation of the
phosphors and surface properties of the MgO film. In particular, a PDP’ 's luminosity is
mainly attributed to the phosphors that degrade exponentially over most of the usage
period. As a result, the luminosity at time ¢ can be expressed as:

n@) =pexp(-y1), t20,

where ¢ is the initial luminosity, and »(>0)is the rate of degradation. Surface
propoerties of the MgO film are mainly affected by a discharge aging process.
During sustained discharge periods, impure gases (e.g., Oz, CO2, Hy) produced during
the manufacturing process can seep into the Xe gas mixture, increasing the
discharge voltage, decreasing the UV intensity, and contaminating the MgQO layer.
Sometimes, the efficiency of the phosphors can also be reduced by the gas
discharge. Manufacturers must exhaust harmful impurities through an “outgassing”
process, then execute accelerated stress tests to burn off remaining impurities in
order to provide a better displaying image before shipping them to customers. This
burn—in procedure (called “aging” in the industry) is considered to be essential in
the manufacturing process. In light display testing, burn—in connotes a different
process of reliability degradation; infant mortality is not a chief concern in terms of
degradation in the luminosity. However, if the burn—in procedure fails to burn off
these impure gases completely, impurities remaining inside will poison the phosphors
and decrease emission efficiency of the PDP. In particular, the blue—emitting
phosphor, europiumactivated barium magnesium aluminate (BaMgAl;00:7 - Eu*
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(BAM)) consisting of nano—particles is highly vulnerable to the harmful impurities
produced during the baking and the panel sealing processes which are parts of PDP
manufacturing.

After several hundred hours of operation in testing environments, those impurities are
burned out at rate ) and the remaining amount of impurities at time ¢ can be
expressed as:

9(t) = pexp(-Ar) |

where p is the initial amount of impurities remaining after the outgassing process.
By taking both inherent degradation characteristics of phosphors and contamination
effects of the impurities on the PDP into account, the PDP luminosity at time ¢ can
be expressed as the following bi—exponential model

y(t) =@ exp(~y,t) + §, exp(-7,t), 120 (1)

based on the 2™ order reaction process. Some coefficients in nonlinear model (1) vary
significantly from unit to unit, hence they should be considered as random. Degradation
models that do not consider random effects will compound these effects with error
estimates, thereby grossly decreasing the precision of the reliability estimates.

In light display devices, luminosity is the most important performance characteristic
and failure is defined by how much the luminosity decreases over time. The variable of
interest is the amount of change from an initial luminosity level while industry standards
define failure (called soft failure) at the time when a device luminosity falls below 50%
of its initial luminosity (see Tannas (1985)). In order to optimize testing time by
considering the trade—off between the accuracy of PDP reliability and testing costs,
advances in accurate modeling of AC PDP performance degradation are required.

3. Nonlinear Ranom—Coefficients Model

Random—coefficients models provide a powerful tool for analyzing repeated
measurement data that arise in various fields of application, such as economics and
pharmacokinetics (Davidian and Giltinan, 1995). Random—coefficients models are
intuitively appealing because they allow for flexible variance—covariance structures of the
response vector.

A general nonlinear random—coefficients (NRC) model for the jth response on the #th
individual test item can be defined as

yi=fABtp+e;=1,...,m, j=1,..,n; (2
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where Yy is the jth response on the th individual, ty is the covariate vector for
the jth measurement time on the ith individual, £(-) is a nonlinear function of t; and

parameter vector @ and £ is a normally distributed random error term.

Modeling the jth individual response is accomplished by letting y and ¢, be the
(n;x1)vectors of responses and random within—individual errors for individual j,
respectively. Define the (n;x1) mean response vector
Bt )=(AB,b )t ). (B, b),te)’ for the th individual test item, depending on the
(px1) individual—specific regression parameter {3, which is represented with (px1)

vector of fixed effects B and (gx1) vector of random effects p.

Based on the set—up in Davidian and Giltinan (1995), within—individual variation and
between individual variation in the NRC model can be written respectively as

Yy, = f(ﬂi’ti)+gi and 'Bi = A'ﬂ+B’b’ )

where A, B are known design matrices of size (pxp) and (pxq) for the fixed
and random effects respectively, which are used to simplify model specification. We

assume that g, is independently and identically distributed as Normal(o,ozlnl) and p

as Normal (( p), where D is a positive definite (gxg) variance—covariance matrix.
Here, B, is specific to the rth test item through p, and p and ¢, are assumed to be

independent for ;=1,.. m-

Within the framework of (3), since the random effects are unobserved quantities,
maximum likelihood estimation in the NRC model is based on the marginal density of y

p(y| p.c*,D)= [ p(y|b, 3,6*,D)p(b)db (4)

where P(Y|5.0%.D) is the conditional density of y given the random effects b having
the marginal distribution p(p).

In general, since this integral does not have a closed—form expression when the model
function £ is nonlinear in b, approximation methods can be used to estimate the
marginal density (4). Bae and Kvam (2004) introduced various approximation
methods to numerically optimize the loglikelihood corresponding to (4) and evaluated
them in terms of comparison criteria for nonmonotonic degradation paths of vacuum
fluorescent displays. In this paper the parameters in the NRC model are estimated
using Lindstrom and Bates’ (LB) algorithm (1990), which is available in the
S—Plus/R nime function (Pinheiro and Bates, 1995).
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4. Failure—Time Distribution

To derive the failure—time distribution and its quantiles, define failure time 7 as the
time that the actual degradation path (£ 4,¢) reaches the prespecified degradation
level 1, . Then the distribution of the failure time is

F.(t)=P(T <t)=P[z(t; B,b,€) <7,] (5)

The failure—time distribution depends on the distribution of the random coefficient
b which is determined by the variance—covariance matrix p Let 3 be the

response at time ¢ and denote the true value of @=(B, D,0?%) as @, then the failure
time can be expressed as

Fy(t:0,) = B, (90 7,) = [ P(y(t) <7, |b)p(b)db )

In practice, the parameters @, are estimated with ML estimators ®=(B, D, 0%
obtained through approximation methods such as the LB algorithm presented in the

preceding section. Then ML estimates of the F,(t)(ﬁ‘}) and p percentile tp('t;) can be
computed by replacing 0 with their estimates ®. However, if there is no
closed—form expression for f?;or if the inverse transformation with respect to ¢ is
overly complicated as in the degradation model (1), we can choose to evaluate
Fior T) using Monte Carlo simulation. For this evaluation, we first use the model
parameter estimates J and 7) (obtained from the m sample paths) to generate the N
simulated realizations § A From N values of B and B compute the N failure times

t by substituting Band %into 1(58 p), and then solve for t,. For any desired values
of ¢ F/(p is estimated from the simulated empirical distribution

@) - N umbegvof( §29)) )

The procedure for constructing parametric bootstrap confidence intervals is
implemented via the procedure in Bae and Kvam (2004).

5. PDP Example

The degradation test for AC PDPs was executed to assess the reliability of AC PDPs
at a constant stress level. In this experiment, PDP degradation was accelerated by using
a higher than normal frequency level. Six individual PDP degradation paths consist of
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measurements of luminosity inspected regularly. As shown in Figure 2, the luminosity of
six PDPs decreases rapidly at the initial stage of degradation testing. This phenomenon is
largely caused by impurities remaining inside the PDPs after the burn—in process. Bae
and Kvam (2006) analyzed PDP data tested at a lower frequency level with a
change—point model to estimate the unknown time change—point within the degradation
path to provide information related to burn—in in the manufacturing process. However, in

order to model the degradation paths more fully, we consider a nonlinear model with
random coefficients.
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Figure 2 : Degradation paths of sic PDPs.

5.1 PDP Degradation Analysis

The lifetime of PDPs is limited by the degradation of phosphors on the rear plate of
the panel. The degradation rate will be constant over time, that is, JdA/dt=-y.
where A is the concentration of phosphors and y>( is the degradation rate
constant. Consequently, the amount of degradation in luminosity proportional to
phosphors degradation at time ¢ is! n(H)=¢exp(-yz), where ¢(>0) denotes initial
luminosity. We seek to find a model for relative luminosity by dividing each of the
luminosity measurements by initial luminosity to easily derive failure—time of the
PDPs, where the failure is defined at the time when the relative luminosity

y(6) =n(0)/n(0) = exp(-y1) | (®)

falls below 0.5 or 100(H below 50%. Percentage values for relative luminosity
will be used for convenience hereafter. Because the degradation rate varies from
item to item, we consider the rates as random coefficients, then estimate the
parameters using S—Pilus/R nlme function. However, the model based on inherent
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degradation mechanism of phosphors fails to adequately describe the PDP
degradation paths in Figure 2. Residual analysis (not given here) shows that the
residuals are highly skewed negative with a median equal to —5.2747.

Alternatively, we seek to combine simultaneously the phosphors degradation and the
effect of burn—in into a degradation model of the luminosity. The impurity burn—in rate
and the phosphors degradation rate, however, are not separable; to model this conflictive
behavior in luminosity degradation explicitly, we introduce the bi—exponential model (1)
to the relative luminosity data. First, we consider a simplest model without
random—effects and estimate the parameters using the nonlinear least squares (NLS)
method (Seber and Wild, 1989). The fixed—effects model also fails to adequately
describe the degradation by ignoring the grouping of brightness measurements according
to individual units and fitting a single model to the collective PDP paths.

To recap, the data suggest that the PDP degradation model should include variability
among and within individual units, which is modeled most effectively using random
coefficients. The likelihood ratio test (LRT) was sequentially executed to compare
nonlinear random—coefficients (NRC) models fit by maximum likelihood to decide which
of the coefficients in the model require random effects to account for between—unit
variation. The model—building procedure is summarized in Table 1. We additionally
computed the Akaike Information Criterion (AIC) (Sakamoto et al.,, 1986) and the
Bayesian Information Criterion (BIC) (Schwarz, 1978) to support the best model
selection procedure. If we are using the AIC and the BIC to compare two models for the
same data, we prefer the model with lower AIC and BIC.

Model Random-coefficients  Covariance  .f. AlC BIC Test LRI p-value
included structure statistic

1 (b1, bo, by, by) cliagonal 9 473.248 499.722
2 (b1, b2,ba) diagonal 3 471247 494781 1lws. 2 523 x107%  0.9942
3 (b1, bg, bs) diagonal S 471.247 494781 1vs. 3 654 x 1075 0.9935
4 (by, b2) general 8 560536 584.069 1 vs. 4 30,289 < 0.0001
5 (D, bg) general 8 531913 555446 1vs. 5 60.665 < 0.0001
6 (b1, b3) general 8 469.247 489.839 1vs. 6 26.252 < 0.0001
7 (b2, by) general "8 468026 491.559 1 vs. 7 3.221 0.0727
8 (b1, bs) diagonal 7 469247 489.839 1vs. 8 T7.23x 1075 1.000

Table 1 : Likelihood ratio tests comparing different random—coefficients models
for the PDP data.

The final fitted NRC model is
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¥,(0)=(18.5286+5, ) exp(~0.00263¢,) +(80.9413+b, ) exp(~0.0000531 ) 9)

where (b,,b5,) '~ Normal((0,0)"(4.17362,0;0,4.61862)) and ¢2=1.0008. The final NRC
model, fitted with solid lines in Figure 3, provides more reliable results in predicting
true values of the PDPs luminosity than the model (11). For the NRC model (9), the

average of absolute relative error, |y-31/y is 9.79x1073, much smaller than model
(8) (0.9866)-

----- NLS —— NRC model

O 1000 2000 3000 4000 %000 8000

Brightness (%)

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Time of measurement (hours)

Figure 3: NRC model and NLS fit for the PDPs.

5.2 PDP Failure—Time Analysis

Based on all the estimates of fixed and random effects, the distribution FAD of
the failure time (the time to reach 50% of initial luminosity) and the quantile ¢, are
estimated by applying the procedure in Section 4. The failure—time distribution is
generated using Monte Carlo simulation with N=50,000. To introduce Monte Carlo
evaluation of FAD, we first use the ML estimates 8 and }) obtained from the six
sample paths to generate the N simulated realizations [ and B From the N values of
B and B we compute the N failure times 7 which are cross—times between the
realized degradation paths and 1, , and derive 79 based on N simulated

failure—times for any desired values of ¢

The point estimates and 100(1-§)% confidence intervals of the pth quantiles for
the failure time distribution were derived. The intervals are based on Bae and
Kvam’ s (2004) procedure for constructing parametric bootstrap confidence
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intervals of the pth quantiles for two empirical failure time distributions. In this case
B=4,000 bootstrap samples were generated. ZF/5 and its 90%, 95% bootstrap
confidence intervals are plotted in Figure 4. The point estimates and 90%, 95%
confidence intervals (in parentheses) of the pth quantiles of failure time distribution
are summarized in Table 2, for p = 0.01, 0.1, 0.5, and 0.9. The lifetime estimates
based on model (9), which ignores the burn—in effect, are much shorter than those
derived from the NRC model (8).

Quaantile
0.01 0.1 0.5 0.9

bi-exp. model (13) 6,414.9 7.693.5 9.103.9 10,416.0

90% CI (6,339.3, 6,490.5) (7,644.8, 7.742.2)  (9,059.3. 9,143.5)  (10,372.0, 10,460.0)
95% CI (6.299.1. 6,530.7) (7.619.0, 7.768.0) (9,035.6 , 9.172.2) (10.349.0, 10,483.0)
exp. model (11) 4,206.5 4.273.7 4,359.7 4.451.3

90% C1 (4,195.2, 4,217.8)  (4,264.9, 4,232.5)  (4,352.8, 4.366.6)  (4,441.9, 4.460.7)
95% C1 (4,189.2, 4,223.8)  (4,260.3, 4,287.1)  (4,349.1, 4.370.3)  (4.436.9, 4,465.7

Table 2 : Quantiles and their 95% bootstrap confidence intervals : PDP example.

6. Conclusion

In this article, we introduced a bi—exponential model with random coefficients to
characterize nonlinear degradation paths caused by contamination effects of (nano—sized)
impurities remaining after the burn—in process of PDPs. The bi—exponential model fits
the nonlinear degradation data well by incorporating both inherent degradation
characteristics of phosphors and contamination effects of impurities. Not only do models
ignoring or failing to correctly capture these nonlinear characteristics lose the efficiency
of prediction, but they also risk grossly underestimating the true reliability. If an initial
unstabilized degradation stage caused by incomplete burn—in can be eliminated by
extending the burn—in time or using a higher stress, the reliability estimation can be
greatly improved by mainly extrapolating lifetimes from the second term of the
bi—exponential model with a slower degradation rate.

An effective burn—in strategy that considers burn—in cost and reliability
simultaneously can be developed for this kind of degradation data. Optimal burn=in
policies in the past have been based on ordinary failure—time data, but are relatively
undeveloped for use with degradation data.
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