DOI QR코드

DOI QR Code

북극 척치해 아라온 마운드 퇴적물의 기원지에 관한 연구

Provenance of the Sediments of the Araon Mound in the Chukchi Sea, Arctic Ocean

  • 장정규 (K-water 연구원) ;
  • 구효진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소)
  • Jang, JeongKyu (K-water Research Institute, Korea Water Resources Corporation) ;
  • Koo, HyoJin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, HyenGoo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2021.02.18
  • 심사 : 2021.03.18
  • 발행 : 2021.03.31

초록

북극해는 기후 변화에 따라 북극의 해빙과 빙상의 분포가 달라지며 쇄설성 퇴적물 내 광물의 특성이 변화한다. 따라서 해빙이나 빙산에 의해 운송된 해양 퇴적물을 연구하는 것은 지구 기후 변화를 이해하는 데에 매우 중요하다. 본 연구에서는 척치해저고원의 아라온 마운드에서 채취한 4개의 중력코어와 아라온 마운드 사이 사면에서 채취한 1개의 중력코어를 사용하여, 벌크광물조성, 점토광물조성, 빙운쇄설물 연구를 통해 쇄설성 퇴적물의 기원지를 알아보고 이를 바탕으로 서북극해의 고환경 변화를 재구성하였다. 코어 퇴적물들은 갈색, 회색, 녹회색을 띠며 서북극해에서 나타나는 간빙기/빙기 순환에 따른 퇴적물 색의 특성을 잘 나타내고 있다. 척치해저고원에서 획득한 코어 퇴적물을 광물 특성과 주변에서 수행된 기존 연구와 비교하여 총 3개의 유닛으로 구분하였다. 최후빙기극대기에 퇴적된 유닛 3 퇴적물은 동시베리아해로 유입되는 콜리마 강과 인디기르카 강 퇴적물들이 동시베리아해 대륙붕에 퇴적된 후, 해빙이나 해류에 의해 유입된 것으로 보인다. 퇴빙기에 해당하는 유닛 2 퇴적물은 동시베리아해로 유입되는 콜리마 강, 인디기르카 강, 보퍼트해로 유입되는 맥켄지강과 캐나다 군도로부터 함께 공급된 것으로 보이며, 로렌타이드 빙상의 융해에 의하여 다량의 빙운쇄설물들이 유입되었다. 간빙기 퇴적물인 유닛 1의 경우, 세립질 퇴적물들은 캐나다 북부와 동시베리아해로부터 해빙과 해류에 의해 공급되었으며, 조립질 퇴적물들은 캐나다 군도로부터 해빙에 의해 유입된 것으로 여겨진다.

In the Arctic Ocean, the distribution of sea ice and ice sheets changes as climate changes. Because the distribution of ice cover influences the mineral composition of marine sediments, studying marine sediments transported by sea ice or iceberg is very important to understand the global climate change. This study analyzes marine sediment samples collected from the Arctic Ocean and infers the provenance of the sediments to reconstruct the paleoenvironment changes of the western Arctic. The analyzed samples include four gravity cores collected from the Araon mound in the Chukchi Plateau and one gravity core collected from the slope between the Araon mounds. The core sediments were brown, gray, and greenish gray, each of which corresponds to the characteristic color of sediments deposited during the interglacial/glacial cycle in the western Arctic Ocean. We divide the core sediments into three units based on the analysis of bulk mineral composition, clay mineral composition, and Ice Rafted Debris (IRD) as well as comparison with previous study results. Unit 3 sediments, deposited during the last glacial maximum, were transported by sea ice and currents after the sediments of the Kolyma and Indigirka Rivers were deposited on the continental shelf of the East Siberian Sea. Unit 2 sediments, deposited during the deglacial period, were from the Kolyma and Indigirka Rivers flowing into the East Siberian Sea as well as from the Mackenzie River and the Canadian Archipelago flowing into the Beaufort Sea. Unit 2 sediments also contained an extensive amount of IRD, which originated from the melted Laurentide Ice Sheet. During the interglacial stage, fine-grained sediments of Unit 1 were transported by sea ice and currents from Northern Canada and the East Siberian Sea, but coarse-grained sediments were derived by sea ice from the Canadian Archipelago.

키워드

참고문헌

  1. Adler, R.E., Polyak, L., Ortiz, J.D., Kaufman, D.S., Channell, J.E., Xuan, C., Grottoli, A.G., Sellen, E. and Crawford, K.A., 2009, Sediment record from the western Arctic Ocean with an improved late quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev ridge. Global and Planetary Change, 68, 18-29. https://doi.org/10.1016/j.gloplacha.2009.03.026
  2. Andrews, J.T., MacLean, B., Kerwin, M., Manley, W., Jennings, A.E. and Hall, F., 1995, Final stages in the collapse of the Laurentide Ice Sheet, Hudson Strait, Canada, NWT: 14C AMS dates, seismic stratigraphy, and magnetic susceptibility logs. Quaternary Science Reviews, 14, 983-1004. https://doi.org/10.1016/0277-3791(95)00059-3
  3. Backman, J., Jakobsson, M., Lovlie, R., Polyak, L. and Febo, L.A., 2004, Is the central Arctic Ocean a sediment starved basin? Quaternary Science Review, 23, 1435-1454. https://doi.org/10.1016/j.quascirev.2003.12.005
  4. Bazhenova, E., Fagel, N. and Stein, R., 2017, North American origin of "pink-white" layers at the Mendeleev Ridge (Arctic Ocean): New insights from lead and neodymium isotope composition of detrital sediment component. Marine Geology, 386, 44-55. https://doi.org/10.1016/j.margeo.2017.01.010
  5. Biscaye, P.E., 1965, Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America, Bullentin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  6. Callaghan, T.V., Johansson, M., Key, J., Prowse, T., Ananicheva, M. and Klepikov, A., 2011,. Feedbacks and interactions: From the Arctic cryosphere to the climate system. Ambio, 40, 75-86. https://doi.org/10.1007/s13280-011-0215-8
  7. Campbell, N.J. and Collin, A.E., 1958, The discoloration of Foxe Basin ice. Journal of the Fisheries Board of Canada, 15, 1175-1188. https://doi.org/10.1139/f58-062
  8. Darby, D.A. and Bischof, J.F., 2004, A Holocene record of changing Arctic Ocean ice drift analogous to the effects of the Arctic Oscillation. Paleoceanography and Paleoclimatology, 19, 1-9.
  9. Darby, D.A., Bischof, J.F. and Jones, G.A., 1997, Radiocarbon chronology of depositional regimes in the western Arctic Ocean. Deep Sea Research Part II, 44, 1745-1757. https://doi.org/10.1016/S0967-0645(97)00039-8
  10. Darby, D.A., Myers, B. W., Jakobsson, M. and Rigor, I., 2011, Modern dirty sea ice characteristics and sources: The role of anchor ice. Journal of Geophysical Research, 116(C9), 1-18.
  11. Darby, D.A., Ortiz, J.D., Grosch, C.E. and Lund, S.P., 2012, 1,500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift. Nature Geoscience, 5, 897-900. https://doi.org/10.1038/ngeo1629
  12. Darby, D.A., Polyak, L. and Bauch, H., 2006, Past glacial and interglacial conditions in the Arctic Ocean and marginal seas - a review. Progress in Oceanography, 71, 129-144. https://doi.org/10.1016/j.pocean.2006.09.009
  13. Dethleff, D., Nurnberg, D., Reimnitz, E., Saarso, M. and Savchenko, Y.P., 1993, East Siberian Arctic region expedition 92: The Laptev Sea - its significance for Arctic Sea ice formation and transpolar sediment flux. Report on Polar Research, 120, 3-37.
  14. Dong, L., Liu, Y., Shi, X., Polyak, L., Huang, Y., Fang, X., Liu, J., Zou, J., Wang, K., Sun, F. and Wang, X., 2017, Sedimentary record from the Canada Basin, Arctic Ocean: implications for late to middle Pleistocene glacial history. Climate of the Past, 13. 511-531. https://doi.org/10.5194/cp-13-511-2017
  15. Fagel, N., Not, C., Gueibe, J., Mattielli, N. and Bazhenova, E., 2014, Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge. Quaternary Science Reviews, 92, 140-154. https://doi.org/10.1016/j.quascirev.2013.12.011
  16. Freire, A.F.M., Matsumoto, R. and Santos, L.A., 2011, Structural-stratigraphic control on the Umitaka Spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea. Marine and Petroleum Geology, 28, 1967-1978. https://doi.org/10.1016/j.marpetgeo.2010.10.004
  17. Harrison, J.C., St-Onge, M.R., Petrov, O., Strelnikov, S., Lopatin, B.,Wilson, F., Tella, S., Paul, D., Lynds, T., Shokalsky, S., Hults, C., Bergman, S., Jepsen, H. F. and Solli, A., 2008, Geological Map of the Arctic, Open File, Geological Survey of Canada, 5816p.
  18. Hong, W.L., Torres, M.E., Carroll, J., Cremiere, A., Panieri, G., Yao, H. and Serov, P., 2017, Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming. Nature Communications, 8, 1-14. https://doi.org/10.1038/s41467-016-0009-6
  19. Jakobsson, M., Grantz, A., Kristoffersen, Y. and Macnab, R., 2003, Physiographic provinces of the Arctic Ocean seafloor. Geological Society of America Bulletin, 115, 1443-1455. https://doi.org/10.1130/b25216.1
  20. Jakobsson, M., Grantz, A., Kristoffersen, Y., Macnab, R., MacDonald, R. W., Sakshaug, E. and Jokat, W., 2004, The Arctic Ocean: Boundary conditions and background information. In The organic Carbon Cycle in the Arctic Ocean (eds. Stein, R. and MacDonald, R.W.), Springer, Berlin, Heidelberg, 1-32.
  21. Jakobsson, M., Lovlie, R., Al-Hanbali, H., Arnold, E., Backman, J. and Morth, M., 2000, Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology, 28, 23-26. https://doi.org/10.1130/0091-7613(2000)28<23:MACCIA>2.0.CO;2
  22. Jin, Y.K. and Shipboard Scientific Party, 2018, ARA08C Cruise Report: 2017 Korea-Canada-USA Beaufort Sea Research Program. Korea Polar Research Institute. 214p.
  23. Jin, Y.K., Shipboard Scientific Party, 2019, ARA09C Cruise Report: 2018 Korea-Russia-Japan East Siberian/Chukchi Sea Research Program. Korea Polar Research Institute, Korea Polar Research Institute, 205p.
  24. Kalinenko, V.V., 2001, Clay minerals in sediments of the Arctic seas. Lithology and Mineral Resources, 36, 362-372. https://doi.org/10.1023/A:1010414305264
  25. Kobayashi, D., Yamamoto, M., Irino, T., Nam, S.I., Park, Y.H., Harada, N., Nagashima, K., Chikata, K. and Saitoh, S.I., 2016, Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial period. Polar Science, 10, 519-531. https://doi.org/10.1016/j.polar.2016.07.005
  26. Kocherla, M., 2013, Authigenic gypsum in gas-hydrate associated sediments from the east coast of India (Bay of Bengal). Acta Geologica Sinica, 87, 749-760. https://doi.org/10.1111/1755-6724.12086
  27. Kuijipers, A., Knutz, P. and Moros, M., 2014, Ice-Rafted Debris (IRD). Encyclopedia of Marine Geosciences, 1-7.
  28. Lin, Q., Wang, J., Algeo, T.J., Su, P. and Hu, G., 2016, Formation mechanism of authigenic gypsum in marine methane hydrate settings: evidence from the northern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 115, 210-220. https://doi.org/10.1016/j.dsr.2016.06.010
  29. McKay, J. L., de Vernal, A., Hillaire-Marcel, C., Not, C., Polyak, L. and Darby, D., 2008, Holocene fluctuations in Arctic sea-ice cover: dinocyst-based reconstructions for the eastern Chukchi Sea. Canadian Journal of Earth Sciences, 45, 1377-1397. https://doi.org/10.1139/E08-046
  30. Naidu, A.S. and Mowatt, T.C., 1983, Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geological Society of America Bulletin, 94, 841-854. https://doi.org/10.1130/0016-7606(1983)94<841:SADPOC>2.0.CO;2
  31. Naidu, A.S., Creager, J.S. and Mowatt, T.C., 1982, Clay mineral dispersal patterns in the North Bering and Chukchi seas. Marine Geology, 47, 1-15. https://doi.org/10.1016/0025-3227(82)90016-0
  32. Okulitch, A.V., 1991, Geology of the Canadian Archipelago and North Greenland. In Innuitian orogen and Arctic platform: Canada and Greenland. The geology of North America (Ed. Trettiln, H.P.), The Geological Society of America, Boulder, Colorado, E, 1:200,000.
  33. Park, K., Ohkushi, K.I., Cho, H.G. and Khim, B.K., 2017, Lithostratigraphy and paleoceanography in the Chukchi Rise of the western Arctic Ocean since the last glacial period. Polar Science, 11, 42-53. https://doi.org/10.1016/j.polar.2017.01.002
  34. Patchett, P.J., Embry, A.F., Ross, G.M., Beauchamp, B., Harrison, J.C., Mayr, U. and Spence, G.O., 2004, Sedimentary cover of the Canadian Shield through Mesozoic time reflected by Nd isotopic and geochemical results for the Sverdrup Basin, Arctic Canada. The Journal of Geology, 112, 39-57. https://doi.org/10.1086/379691
  35. Phillips, R.L. and Grantz, A., 2001, Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of Late Quaternary oceanic and atmospheric circulation in the Arctic. Marine Geology, 172, 91-115. https://doi.org/10.1016/S0025-3227(00)00101-8
  36. Pierre, C., 2017, Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449, 158-164. https://doi.org/10.1016/j.chemgeo.2016.11.005
  37. Pierre, C., Bayon, G., Blanc-Valleron, M.M., Mascle, J. and Dupre, S., 2014, Authigenic carbonates related to active seepage of methane-rich hot brines at the Cheops mud volcano, Menes caldera (Nile deep-sea fan, eastern Mediterranean Sea). Geo-Marine Letters, 34, 253-267. https://doi.org/10.1007/s00367-014-0362-6
  38. Polyak, L. and Jakobsson, M., 2011, Quaternary sedimentation in the Arctic Ocean: Recent advances and further challenges. Oceanography, 24, 52-64. https://doi.org/10.5670/oceanog.2011.55
  39. Polyak, L.V., Curry, W.B., Darby, D.A., Bischof, J. and Cronin, T.M., 2004, Contrasting glacial/interglacial regimes in the Western Arctic Ocean as exemplied by a sedimentary record from the Mendeleev Ridge. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, 73-93. https://doi.org/10.1016/S0031-0182(03)00661-8
  40. Polyak, L., Bischof, J., Ortiz, J.D., Darby, D.A., Channell, J.E., Xuan, C. and Adler, R.E., 2009, Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Global and Planetary Change, 68, 5-17. https://doi.org/10.1016/j.gloplacha.2009.03.014
  41. Rachold, V., 1999, Major, trace, and rare earth element geochemistry of suspended particulate material of East Siberian rivers draining to the Arctic Ocean. In: Land-ocean systems in the Siberian Arctic: Dynamics and History (eds. Kassens, H., Bauch, H., Dmitrenko, H.A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L.A.) Heidelberg: Springer-Verlag, 199-222.
  42. Reimnitz, E., Marincovich, L., McCormick, M. and Briggs, W.M., 1992, Suspension freezing of bottom sediment and biota in the Northwest passage and implications for Arctic Ocean sedimentation. The Canadian Journal of Earth Science, 29, 693-703. https://doi.org/10.1139/e92-060
  43. Royer, T.C. and Emery, W.J., 1987, Circulation in the Gulf of Alaska, 1981. Deep Sea Research Part A. Oceanographic Research Papers, 34, 1361-1377. https://doi.org/10.1016/0198-0149(87)90132-4
  44. Sassen, R., Roberts, H.H., Carney, R., Milkov, A.V., DeFreitas, D.A., Lanoil, B. and Zhang, C., 2004, Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chemical Geology, 205, 195-217. https://doi.org/10.1016/j.chemgeo.2003.12.032
  45. Serie, C., Huuse, M. and Schodt, N.H., 2012, Gas hydrate pingoes: Deep seafloor evidence of focused fluid flow on continental margins. Geology, 40, 207-210. https://doi.org/10.1130/G32690.1
  46. Silverberg, N., 1972, Sedimentology of the surface sediments of the east Siberian and Laptev Seas. Ph.D. Thesis, University of Washington, 184p.
  47. Somoza, L., Leon, R., Medialdea, T., Perez, L.F., Gonzalez, F.J. and Maldonado, A., 2014, Seafloor mounds, craters and depressions linked to seismic chimneys breaching fossilized diagenetic bottom simulating reflectors in the central and southern Scotia Sea, Antarctica. Global and Planetary Change, 123, 359-373. https://doi.org/10.1016/j.gloplacha.2014.08.004
  48. Stein, R., 2008, Arctic Ocean sediments: processes, proxies, and paleoenvironment. Development in Marine Geology, Elsevier, 608p.
  49. Stein, R., 2019, The late Mesozoic-Cenozoic Arctic Ocean climate and sea ice history: A challenge for past and future scientific ocean drilling. Paleoceanography and Paleoclimatology, 34, 1851-1894. https://doi.org/10.1029/2018pa003433
  50. Stein, R., Matthiessen, J., Niessen, F., Krylov, A., Nam, S. I. and Bazhenova, E., 2010, Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79, 97-121.
  51. Stocker, T., 2014, Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1205p.
  52. Stokes, C.R., Clark, C.D., Darby, D.A. and Hodgson, D.A., 2005, Late Pleistocene ice export events into the Arctic ocean from the M'Clure strait ice stream, Canadian Arctic Archipelago. Global and Planetary Change, 49, 139-162. https://doi.org/10.1016/j.gloplacha.2005.06.001
  53. Tantillo, B., 2012, Can Sea ice-rafted debris be distinguished from iceberg-rafted debris based on grain surface features? Analysis of quartz grains from modern Arctic Ocean sea ice floes. In Geological Society of America Abstracts with Programs, Vol. 44, No. 4, p. 1.
  54. Tremblay, L.B., Mysak, L.A. and Dyke, A.S., 1997, Evidence from driftwood records for century-to-millennial scale variations of the high latitude atmospheric circulation during the Holocene. Geophysical Research Letters, 24, 2027-2030. https://doi.org/10.1029/97GL02028
  55. Viscosi-Shirley, C., Mammone, K., Pisias, N. and Dymond, J., 2003a, Clay mineralogy and multielement chemistry of surface sediments on the Siberian-Arctic shelf: Implications for sediment provenance and grain size sorting. Continental Shelf Research, 23, 1175-1200. https://doi.org/10.1016/S0278-4343(03)00091-8
  56. Viscosi-Shirley, C., Pisias, N. and Mammone, K., 2003b, Sediment source strength, transport pathways and accumulation patterns on the Siberian Arctic's Chukchi and Laptev shelves. Continental Shelf Research, 23, 1201-1225. https://doi.org/10.1016/S0278-4343(03)00090-6
  57. Vogt, C., Knies, J., Spielhagen, R.F. and Stein, R., 2001, Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years. Global and Planetary Change, 31, 23-44. https://doi.org/10.1016/S0921-8181(01)00111-4
  58. Wagner, A., Lohmann, G. and Prange, M., 2011, Arctic river discharge trends since 7ka BP. Global and Planetary Change, 79, 48-60. https://doi.org/10.1016/j.gloplacha.2011.07.006
  59. Wahsner, M., Muller, C., Stein, R., Ivanov, G., Levitan, M., Shelekova, E. and Tarasov, G., 1999, Clay mineral distributions in surface sediments from the Central Arctic Ocean and the Eurasian continental margin as indicator for source areas and transport pathways: A synthesis. Boreas, 28, 215-233. https://doi.org/10.1080/030094899421272
  60. Weingartner, T., Aagaard, K., Woodgate, R., Danielson, S., Sasaki, Y. and Cavalieri, D., 2005, Circulation on the north central Chukchi Sea shelf. Deep Sea Research Part II: Topical Studies in Oceanography, 52, 3150-3174. https://doi.org/10.1016/j.dsr2.2005.10.015
  61. Zou, H., 2016, An X-ray diffraction approach: bulk mineral assemblages as provenance indicator of sediments from the Arctic Ocean. PhD Thesis, University of Bremen, Bremen, 104p.