• 제목/요약/키워드: Deformation-induced martensite

검색결과 53건 처리시간 0.027초

오스테나이트 스테인리스강의 극저온 특성 (An Extremely Low Temperature Properties of Austenite Stainless Steels)

  • 정찬회;김순국;이준희;정세진;김익수
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.37-42
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen and deformation-induced martensitic transformation on the behavior of austenite stainless steels used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing of immersion time in the liquid nitrogen, the tensile strength of all austenite stainless steels at cryogenic temperature was increased because the martensite transformation of unstable austenite. The restraint of crack generation ana transmission also increased the tensile strength by the active ${\alpha}'$ transformation. The elongation decreasing of 321 steel is not the mechanical deformation of austenite phase but the stress induced martensite phase during the tensile test.

오스테나이트 304 스테인레스 강의 응력부식균열에 미치는 냉간가공의 영향 (Effect of Cold Work on the Stress Corrosion Cracking in Austenitic 304 Stainless Steel)

  • 강계명;최종운
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.19-28
    • /
    • 1997
  • This study was made of the effect of cold working on the stress corrosion cracking(SCC) of austenitlc 304 stainless steel in boiling 42% $MgCl_2$ solution. For this experiment, specimens cold-worked of 0%, 10%, 20%, 30%, 40% were fabricated respectively, and then experiments of mechanical properties and stress corrosion cracking(SCC) of these specimens were carried out. The results of these experiments indicate that the maximum resistance to SCC showed at 20% of cold working degree and that the SCC susceptibility depended on the volume fraction of deformation-induced martensite by cold working and the work hardening of matrix. On the other hand, the fracture mode was changed. This phenomenon was considered that deformation-induced martensite was grown from transgranular fracture mode to intergranular fracture mode and caused by increased of dislocation density along the slip planes.

  • PDF

오스테나이트계 스테인리스강의 감쇠능에 미치는 역변태 오스테나이트의 영향 (Effect of Reversed Austenite on the Damping Capacity of Austenitic Stainless Steel)

  • 김영화;성지현;강창룡
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.70-75
    • /
    • 2015
  • The influence of reversed austenite on the damping capacity in austenitic stainless steel with two phase of martensite and reversed austenite was investigated. The two phases of deformation induced martensite and reversed austenite was obtained by an reverse annealing treatment at $500^{\circ}C{\sim}700^{\circ}C$ for various time after 70% cold rolling. With an increase of the reverse annealing treatment temperature and time, volume fraction of reversed austenite was rapidly increased. With an increase of volume fraction of reveresd austenite, damping capacity was rapidly increased. At same volume of reveresd austenite, damping capacity of reversed austenite obtained by reverse annealing treatment at $700^{\circ}C$ for various time was higher then reveresd austenite obtained by reverse annealing treatment at $500^{\circ}C{\sim}700^{\circ}C$ for 10min. Thus, the damping capacity was affected greatly by reversed austenite obtained by annealing treatment at $700^{\circ}C$ for various time.

Fe-Al-Mn 합금의 진동감쇠능 및 인장성질에 미치는 미세조직의 영향 (Effect of Microstructure on the Damping Capacity and Tensile Properties of Fe-Al-Mn Alloys)

  • 손동욱;김재환;이종문;김익수;김한청;강창룡
    • 동력기계공학회지
    • /
    • 제8권4호
    • /
    • pp.31-37
    • /
    • 2004
  • The damping capacity and strength of Fe-2Al-26Mn alloys have been studied for the development of new materials with high strength and damping capacity. Particularly, the effect of ${\alpha}'\;and\;{\varepsilon}$ martensite phase, which constitutes the microstructure of cold rolled Fe-Al-Mn alloys, has been investigated in terms of the strength and damping capacity of the alloys. The damping capacity rises with increasing the degree of cold rolling and reveals the maximum value at 25% reduction. The damping capacity is strongly affected by the volume fraction of ${\varepsilon}$ martensite, while the other phases, such as ${\alpha}'$ martensite and austenite phase, actually exhibit little effect on damping capacity. Considering that tensile strength increases and elongation decreases with increasing the volume fraction of ${\alpha}'$ martensite, it is proved that tensile strength is mainly affected by the amount of ${\alpha}'$ martensite.

  • PDF

소성유기마르텐사이트 변태에 의한 나노결정 FeCrC 소결합금의 기계적 강도 향상 (Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation)

  • 김광훈;전준협;서남혁;박정빈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.246-252
    • /
    • 2021
  • The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.

고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 역변태의 영향 (Effect of Reverse Transformation on the Mechanical Properties of High Manganease Austenitic Stainless Steel)

  • 강창룡;허태영
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.413-418
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the mechanical properties in high manganese austenitic stainless steel. Over 95% of the austenite was transformed to deformation-induced martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with an increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. There was a rapid decrese in strength and hardness with annealing at temperature above $550^{\circ}C$, while elongation increased rapidly above $600^{\circ}C$. At $700^{\circ}C$, hardness and strength decreased rapidly, and elongation increased steeply with an increasing reverse treatment time up to 10 min, whereas there were no significant change with a treatment time after 10 min. The reverse-transformed austenite showed an ultra-fine grain size less than $0.2{\mu}m$, which made it possible to strengthen the high manganese austenitic stainless steel.

Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능] (The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity])

  • 손동욱;정상훈;김재환;이종문;김익수;강창룡
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF

22Cr 마이크로 듀플렉스 스테인리스강의 변형유기마르텐사이트에 미치는 Ni과 Mn의 영향 (Effect of Ni and Mn on Strain Induced Martensite Behavior of 22Cr Micro-Duplex Stainless steel)

  • 박준영;김기엽;안용식
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.122-129
    • /
    • 2013
  • The microstructure and deformation behavior in 22Cr-0.2N micro-duplex stainless steels with various Ni and Mn contents were compared using by OM, TEM, and XRD. The 22Cr-0.2N duplex stainless steel plates were fabricated and hot rolled, followed by annealing treatment at the temperature range of $1,000-1,100^{\circ}C$. All the samples showed the common strain hardening behaviour during the tensile test at a room temperature. The steels tested at the temperatures of $-30^{\circ}C$ or $-50^{\circ}C$ showed a distinct inflection point in the stress-strain curves, which should be resulted from the formation of strain-induced martensite(SIM) of austenite phase. This was confirmed by TEM observations. The onset strain of a inflection point in a stress-strain curve should be depended up the value of $M_d30$. With the decrease of the tensile test temperature, the inflection point appeared earlier, and the strength and fracture strain were higher. The tensile behaviour was discussed from the point of austenite stability of the micro-duplex stainless steels with the different Ni and Mn content.

방전 플라즈마 소결로 제조된 나노결정 Fe-7wt.%Mn 합금의 오스테나이트 안정성에 미치는 Mo 첨가 효과 (Effect of Mo Addition on the Austenite Stability of Nanocrystalline Fe-7wt.%Mn Alloy Fabricated by Spark Plasma Sintering)

  • 신우철;손승배;정재길;이석재
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.517-522
    • /
    • 2022
  • We investigate the austenite stability in nanocrystalline Fe-7%Mn-X%Mo (X = 0, 1, and 2) alloys fabricated by spark plasma sintering. Mo is known as a ferrite stabilizing element, whereas Mn is an austenite stabilizing element, and many studies have focused on the effect of Mn addition on austenite stability. Herein, the volume fraction of austenite in nanocrystalline Fe-7%Mn alloys with different Mo contents is measured using X-ray diffraction. Using a disk compressive test, austenite in Fe-Mn-Mo alloys is confirmed to transform into strain-induced martensite during plastic deformation by a disk d. The variation in austenite stability in response to the addition of Mo is quantitatively evaluated by comparing the k-parameters of the kinetic equation for the strain-induced martensite transformation.

C-Mn-Si계 변태유기소성강의 성형성에 미치는 베이나이트 변태온도 및 응력상태의 영향 (Effects of Bainitic Transformation Temperature and Stress State on the Formability of C-Mn-Si TRIP Steels)

  • 전현조;오진후;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.156-160
    • /
    • 2001
  • The effects of TRansformation Induced Plasticity(TRIP) phenomena on the plastic deformation of 0.2C-1.5Si-1.5Mn multiphase steels have been investigated at various heat treatment and stress conditions. In order to estimate the formability, the hole expansion(HE) tests and the tensile tests were carried out. The formability evaluated from the uni-axial tensile tests was quite different from the formability measured from multi-axial HE-tests. Consequently, the formability in the multi-axial stress state decreased due to the extinction of the retained austenite relatively at earlier deformation stage and the production of irregular α' martensite. However, the defects of TRIP-steels were initiated exactly at the boundary between transformed martensite and ferrite matrix regardless of stress state. In addition, new experimental formula is proposed in order to predict the multi-axial formability of the TRIP steels from the results of uniaxial tensile test.

  • PDF