Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.6.517

Effect of Mo Addition on the Austenite Stability of Nanocrystalline Fe-7wt.%Mn Alloy Fabricated by Spark Plasma Sintering  

Woochul, Shin (Division of Advanced Materials Engineering, Jeonbuk National University)
Seung Bae, Son (Division of Advanced Materials Engineering, Jeonbuk National University)
Jae-Gil, Jung (Division of Advanced Materials Engineering, Jeonbuk National University)
Seok-Jae, Lee (Division of Advanced Materials Engineering, Jeonbuk National University)
Publication Information
Journal of Powder Materials / v.29, no.6, 2022 , pp. 517-522 More about this Journal
Abstract
We investigate the austenite stability in nanocrystalline Fe-7%Mn-X%Mo (X = 0, 1, and 2) alloys fabricated by spark plasma sintering. Mo is known as a ferrite stabilizing element, whereas Mn is an austenite stabilizing element, and many studies have focused on the effect of Mn addition on austenite stability. Herein, the volume fraction of austenite in nanocrystalline Fe-7%Mn alloys with different Mo contents is measured using X-ray diffraction. Using a disk compressive test, austenite in Fe-Mn-Mo alloys is confirmed to transform into strain-induced martensite during plastic deformation by a disk d. The variation in austenite stability in response to the addition of Mo is quantitatively evaluated by comparing the k-parameters of the kinetic equation for the strain-induced martensite transformation.
Keywords
Fe-Mn-Mo alloy; Austenite stability; Strain-induced martensite; Spark plasma sintering;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. Yan, Q. Wang, X. Chen, C. Zhang and G. Cui: Vacuum, 163 (2019) 194.   DOI
2 Z. C. Li, H. Ding, R. D. K. Misra and Z. H. Cai: Mater. Sci. Eng. A, 682 (2017) 211.   DOI
3 K. Kim and S. J. Lee: Mater. Sci. Eng. A, 698 (2017) 183.   DOI
4 Y. Sakuma, O. Matsumura and H. Takechi: Metall. Trans. A, 22A (1991) 489.
5 J. Chipman: Metall. Trans., 3 (1972) 55.   DOI
6 H. K. D. H. Bhadeshia: Steels microstructure and properties, 3rd ed. Elsevier, (2013).
7 S. J. Lee, S. Lee and B. C. De Cooman: Int. J. Mater. Res., 104 (2013) 423.   DOI
8 C. Keller, K. Tabalaiev, G. Marnier, J. Noudem, X. Sauvage and E. Hug: Mater. Sci. Eng. A, 665 (2016) 125.   DOI
9 J. H. Ryu, S. S. Shin, B. R. Ryu, K. S. Kim, J. H. Jang, I. H. Oh, K. T. Kim and H. K. Park: J. Powder Mater., 24 (2017) 302.   DOI
10 S. Choi, N. Seo, J. Jun, S. B. Son and S. J. Lee: J. Powder Mater., 27 (2020) 414.   DOI
11 Y. Kang, S. Yoon, M. Kim and S. J. Lee: ASCT, 23 (2014) 151.   DOI
12 A. T. Procopio, A. Zavaliangos and J. C. Cunningham: Mater. Sci., 38 (2003) 3629.   DOI
13 C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1.   DOI
14 G. K. Williamson and W. H. Hall: Acta Metall., 1 (1953) 22.   DOI
15 B. L. Averbach and M. Cohen: Trans. AIME., 196 (1948) 1.
16 J. Jeon, S. Choi, N. Seo, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1249.
17 N. Seo, J. Jeon, G. Kim, J. Park, S. B. Son and S. J. Lee: J. Powder Mater., 27 (2020) 373.   DOI
18 G. Kim, J. Jeon, N. Seo, S Choi, M. S. Oh, S. B. Son and S. J. Lee: Arch. Metall. Mater., 66 (2021) 759.
19 G. Kim, J. Jeon, N. Seo, J. Park, S. B. Son and S. J. Lee: J. Powder Mater., 28 (2021) 246   DOI
20 S. Takaki, K. Fukunaga, J. Syarif and T. Tsuchiyama: Mater. Trans. A, 7 (2004) 2245.
21 S. J. Lee and K. S. Park: Metall. Mater. Trans. A, 44 (2013) 3423.   DOI
22 D. Barbier: Adv. Eng. Mater., 16 (2014) 122.   DOI
23 S. Yoon, S. Kang, Y. Choi, H. Choi and S. J. Lee: Powder Tech., 298 (2016) 106.
24 F. Yin, G. J. Cheng, R. Xu, K. Zhao, Q. Li, J. Jian, S. Hu, S. Sun, L. An and Q. Han: Scr. Mater., 155 (2018) 26.   DOI
25 S. J. Oh, D. Park, K. Kim, I. J. Shon and S. J. Lee: Mater. Sci. Eng. A, 725 (2018) 382.   DOI