Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.3.246

Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation  

Kim, Gwanghun (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Park, Jungbin (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
Publication Information
Journal of Powder Materials / v.28, no.3, 2021 , pp. 246-252 More about this Journal
Abstract
The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.
Keywords
FeCrC alloy; Austenite stability; Strain-induced martensitic transformation; Spark plasma sintering; Mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Jacques, J. Ladriere and F. Delannay: Metall. Mater. Trans. A, 32 (2001) 2759.   DOI
2 J. Zhao, T. S. Wang, B. Lv and F. C. Zhang: Mater. Sci. Eng. A, 628 (2015) 327.   DOI
3 S. Lee, S. J. Lee and B. C. De Cooman: Scr. Mater., 65 (2011) 225.   DOI
4 C. Keller, K. Tabalaiev, G. Marnier, J. Noudem, X. Sauvage and E. Hug: Mater. Sci. Eng. A, 665 (2016) 125.   DOI
5 Y. H. Lee, X. K. Hyunh and J. S. Kim: J. Korean Powder Metall. Inst., 21 (2014) 382.   DOI
6 S. J. Oh, J. H. Jun, M. H. Lee, I. J. Shon and S. J. Lee: Met. Mater. Int., 24 (2018) 597.   DOI
7 G. Kim, J. Jeon, N. Seo, S Choi, M. S. Oh, S. B. Son and S. J. Lee: Arch. Metall. Mater., 66 (2021) 759.
8 G. K. Williamson and W. H. Hall: Acta Metall., 1 (1953) 22.   DOI
9 B. L. Averbach and M. Cohen: Trans. AIME., 196 (1948) 1.
10 J. Burke: Pergamon Press, Oxford, United Kingdom, (1965).
11 O. Matsumura, Y. Sakuma and H. Takechi: Scr. Mater., 21 (1987) 1301.
12 N. Tsuchida and Y. Tomota: Mater. Sci. Eng. A, 285 (2000) 345.
13 D. Krizan and B. C. De Cooman: Steel Res. Int., 79 (2008) 513.   DOI
14 L. Samek, E. De Moor, J. Penning and B. C. De Cooman: Metall. Mater. Trans. A, 37A (2006) 109.
15 A. Bouziane, L. Boulanouar, M. W. Azizi, O. Keblouti and S. Belhadi: Struct. Eng. Mech., 66 (2018) 285.   DOI
16 K. Hokkirigawa and K. Kato: Wear, 123 (1988) 241.   DOI
17 S. J. Lee, S. Lee and B. C. De Cooman: Int. J. Mater. Res., 104 (2013) 423.   DOI
18 S. J. Lee: ISIJ. Int., 53 (2013) 1902.   DOI
19 R. Ramesh and R. Gnanamoorthy: Mater. Des., 28 (2007) 1447.   DOI
20 X. H. Lu, D. S. Qian, W. Li and X. J. Jin: Mater. Lett., 234 (2019) 5.   DOI
21 S. J. Oh, J. H. Jeon, I. J. Shon and S. J. Lee: J. Korean Powder Metall. Inst., 26 (2019) 389.   DOI
22 M. W. Azizi, S. Belhadi, M. A. Yallese, T. Mabrouki and J. F. Rigal: J. Mech. Sci. Technol., 26 (2012) 4105.   DOI
23 S. Li, Y. Su, X. Shu and J. Chen: Wear, 380-381 (2017) 146.
24 J. R. Weertman: Mater. Sci. Eng. A, 166 (1993) 161.   DOI
25 H. Nakashima: NTN Tech. Rev., 76 (2008) 10.
26 J. Talonen, P. Nenonen, G. Pape and H. Hanninen: Metall. Trans. A, 36 (2005) 421.   DOI
27 O. E. Falodun, S. R. Oke, B. A. Obadele, A. M. Okoro and P. A. Olubambi: Met. Mater. Int., 28 (2019) 1.
28 C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1.   DOI
29 G. B. Olson and M. Cohen: Metall. Trans. A, 6A (1975) 791.
30 J. Jeon, S. Choi, N. Seo, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1249.
31 S. J. Oh, D. Park, K. Kim, I. J. Shon and S. J. Lee: Mater. Sci. Eng. A, 725 (2018) 382.   DOI
32 O. Grassel, L. Kruger, G. Frommeyer and L. W. Meyer: Int. J. Plast., 16 (2000) 1391.   DOI
33 N. Seo, J. Jeon, G. Kim, J. Park, S. B. Son and S. J. Lee: J. Korean Powder Metall. Inst., 27 (2020) 373.   DOI
34 J. H. Ryu, S. S. Shin, B. R. Ryu, K. S. Kim, J. H. Jang, I. H. Oh, K. T. Kim and H. K. Park: J. Korean Powder Metall. Inst., 24 (2017) 302.   DOI
35 E. Yajima, T. Miyazaki, T. Sugiyama and H. Terajima: Trans. JIM, 15 (1974) 173.   DOI
36 D. S. Park, S. J. Oh, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 63 (2018) 1479.
37 S. J. Oh, B. C. Kim, M. C. Suh, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 64 (2019) 863.
38 H. K. D. H. Bhadeshia: Prog. Mater. Sci., 57 (2012) 268.   DOI