• 제목/요약/키워드: Deflection limit

검색결과 158건 처리시간 0.027초

철근콘크리트 부재의 처짐과 균열폭에 대한 인장증강효과의 영향 (Influence of Tension Stiffening Effect on Deflection and Crack Width in RC Members)

  • 최승원;양준호;김우
    • 콘크리트학회논문집
    • /
    • 제22권6호
    • /
    • pp.761-768
    • /
    • 2010
  • 철근콘크리트 구조물에 균열이 발생하면 균열과 균열 사이 단면의 콘크리트는 부착에 의해 인장력을 전달하게 되고 이에 따라 철근의 변형은 줄어든다. 이러한 현상을 인장증강효과라 하고, 처짐 및 균열폭과 같은 사용한계상태의 검증에 중요한 역할을 한다. 그러나 균열 사이의 복잡한 변형률 분포 때문에 사용성한계상태의 검증에 어려움이 따르므로 일반적으로 평균 변형률을 사용하여 처짐과 균열폭을 산정하고 있다. EC2에서는 1차식 및 2차식 형태의 인장 증강효과를 사용하여 평균 곡률을 산정하고 이로부터 처짐량을 산정하고 있다. 이 연구에서는 휨부재에 대하여 인장증강효과에 대한 다양한 모델을 적용하여 처짐과 균열폭을 산정하고 EC2와 콘크리트구조설계기준에 의한 결과와 비교하였다. 해석 결과 2차식 형태의 인장증강효과를 일관되게 적용함으로써 실험 결과에 더 부합된 결과를 얻을 수 있었고 해석의 일관성도 도모할 수 있는 것으로 나타났다.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

양각 거더교의 정적·동적특성에 관한 연구 (A Study on the Static and Dynamic Characteristics of Raised Girder Bridges)

  • 이지연;김성;박승진
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.851-858
    • /
    • 2023
  • 연구목적: 종래의 PSC 거더에 비해 단면 효율이 개선된 양각 거더교의 구조적 안전성을 확보하기 위한 연구를 수행하였다. 이를 위해 거더 길이, 높이, 폭과 같은 단면의 제원을 정하고 강연선의 배치를 설계하여 정적 및 동적 하중에 의한 양각 거더의 실질적인 성능을 검증하였다. 연구방법: 정적 성능 실험은 1차 및 2차 정적 하중에 대한 처짐, 균열 등의 거동 응답을 측정하여 사용성 한계상태를 검토하였다. 또한, 동적 하중 재하 실험은 시간에 따른 가속도, 변위 거동 응답을 측정하여 고유진동수 및 감쇠비를 산정하여 사용성 한계상태를 검토하였다. 연구결과: 정적 성능 실험 결과 최대 재하하중 기준 처짐값은 안정적인 거동을 나타났고, 최대 재하하중 수준에서 측정된 균열폭은 매우 작아서 사용성 한계상태를 만족하는 것으로 나타났다. 또한, 동적 하중 재하 실험 설계 시 산정된 고유진동수를 상회하는 고유진동수가 나타났으며, 현행 규정에 만족하는 감쇠비를 확보하는 것으로 나타났다.

Study on seismic performance of exterior reinforced concrete beam-column joint under variable loading speeds or axial forces

  • Guoxi Fan;Wantong Xiang;Debin Wang;Zichen Dou;Xiaocheng Tang
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.31-48
    • /
    • 2024
  • In order to get a better understanding of seismic performance of exterior beam-column joint, reciprocating loading tests with variable loading speeds or axial forces were carried out. The main findings indicate that only few cracks exist on the surface of the joint core area, while the plastic hinge region at the beam end is seriously damaged. The damage of the specimen is more serious with the increase of the upper limit of variable axial force. The deflection ductility coefficient of specimen decreases to various degrees after the upper limit of variable axial force increases. In addition, the higher the loading speed is, the lower the deflection ductility coefficient of the specimen is. The stiffness of the specimen decreases as the upper limit of variable axial force or the loading speed increase. Compared to the influence of variable axial force, the influence of the loading speed on the stiffness degradation of the specimen is more obvious. The cumulative energy dissipation and the equivalent viscous damping coefficient of specimen decrease with the increase of loading speed. The influence of variable axial force on the energy dissipation of specimen varies under different loading speeds. Based on the truss model, the biaxial stress criterion, the Rankine criterion, the Kent-Scott-Park model, the equivalent theorem of shearing stress, the softened strut-and-tie model, the controlled slip theory and the proposed equations, a calculation method for the shear capacity is proposed with satisfactory prediction results.

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

층상 유한요소를 이용한 철근콘크리트 보의 처짐 해석모델 (Analytical Modeling for Reinforced Concrete Beam Deflections Using Layered Finite Elements)

  • 최봉섭;권영웅
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.131-137
    • /
    • 1999
  • The use of higher strength materials with the strength methed of design has resulted in more slender member and shallower sections. For this reason, it is necessary to satisfy the requirements of serviceability even though the structural safety is the most important limit state. This paper is only concerned with the control of deflections in the serviceability. In this study, an analytical model is presented to predict the deflections of reinforced concrete beams to given loading and environmental conditions. This model is based on the finite element approach in which a finite element is generally divided into a number of stiffening effect due to cracking, creep and shrinkage. Comparisons are made with available measured deflections reported by others to assess the capability of the layered beam model. The calculated values of instantaneous and long-term deflection show good agreement with experimental results in the range of tension stiffening parameter $\beta$ between 2.5 and 3.0.

Tests of concrete slabs reinforced with CFRP prestressed prisms

  • Liang, Jiongfeng;Yu, Deng;Yang, Zeping;Chai, Xinjun
    • Computers and Concrete
    • /
    • 제18권3호
    • /
    • pp.355-366
    • /
    • 2016
  • This paper reports the testing of concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) on the flexural behavior. Four concrete slabs were tested, a reference slab reinforced with steel bars, and three slabs reinforced with CFRP prestressed concrete prisms (PCP). All slabs were made with dimensions of 600mm in width, 2200mm in length and 150 in depth. All concrete slabs reinforced with CFRP prestressed concrete prisms(PCP) exhibited CFRP bar rupture failure mode. It was shown that the application of the CFRP prestressed prisms can limit service load deflections and crack width, the increased level of prestress in the CFRP prestressed prism positively affected the maximum crack width. The deflection of concrete slabs reinforced with CFRP prestressed prisms decreased as prestress in the CFRP prestressed prism increased.

시간종속적 하중이 작용하는 구조물의 동특성 (Dynamic behavior of a supporting structure subjected to a force of time dependent frequency)

  • 정태진;박영조
    • 오토저널
    • /
    • 제8권4호
    • /
    • pp.66-72
    • /
    • 1986
  • Numerical analysis has been made on the dynamic behavior of a supporting structure subjected to a force of time dependent frequency. The effect of solid viscosity is studied when the frequency of external force passes through the first critical frequency of the simple beam for four times. Within the Euler-Bernoulli beam theory, the solutions are obtained by using finite Fourier and Laplace transformation methods with respect to space and time variables. The result shows that the maximum value of the dynamic deflection is considerably affected by the value of the solid viscosity as well as the frequency difference The maximum dynamic deflection is found to occur in the frequency lower limit C of 0.85-0.985 in the presence of the solid viscosity.

  • PDF

각도센서를 사용한 지상발사플랫폼의 후류편향판 구동 제어에 관한 연구 (The Study on the Control of the Plume Deflection Panel of the Ground Launching Platform Using a Tilt Angle Sensor)

  • 최병창
    • 한국군사과학기술학회지
    • /
    • 제25권5호
    • /
    • pp.522-529
    • /
    • 2022
  • In this paper, an experimental study on the control of the plume deflection panel(PDP) with a support jack of the ground launching platform using a tilt angle sensor is described. To overcome the disadvantages of the existing PDP control without a support jack using a limit sensor, the control algorithm using a tilt angle sensor and the ferroelectric RAM in the Launcher Control Unit for recognizing the contact with the ground in an abnormal operation is proposed to control the PDP in various operation environments. Finally, the proposed algorithm can be well applied for not only heavy-load launching platforms but also any other similar systems.