• Title/Summary/Keyword: Deflection characteristics

Search Result 633, Processing Time 0.024 seconds

Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite

  • Pandey, Harsh Kumar;Agrawal, Himanshu;Panda, Subrata Kumar;Hirwani, Chetan Kumar;Katariya, Pankaj V.;Dewangan, Hukum Chand
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.715-724
    • /
    • 2020
  • The influence on flexural strength of Glass/Epoxy laminated composite curved panels of different geometries (cylindrical, spherical, elliptical, hyperboloid and flat) due to inclusion of nano cenosphere filler examined in this research article. The deflection responses of the hybrid structure are evaluated numerically using the isoparametric finite element technique and modelled mathematically via higher-order displacement structural kinematics. To predict the deflection values, a customised in-house computer code in MATLAB environment is prepared using the higher-order isoparametric formulation. Subsequently, the numerical model validity has been established by comparing with those of available benchmark solution including the convergence characteristics of the finite element solution. Further, a few cenosphere filled hybrid composite are prepared for different volume fractions for the experimental purpose, to review the propose model accuracy. The experimental deflection values are compared with the finite element solutions, where the experimental elastic properties are adopted for the computation. Finally, the effect of different variable design dependent parameter and the percentages of nano cenosphere including the geometrical shapes obtained via a set of numerical experimentation.

A Study on the Improvement of Airflow Deflection in a Cleanroom of Class 1000 (Class 1000 클린룸에서 편류 개선에 관한 연구)

  • Noh, Kwang-Chul;Lee, Seung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.225-233
    • /
    • 2010
  • We performed 3 dimensional numerical study on the improvement of the airflow deflection in the cleanroom of Class 1000, which is presently operated for the manufacturing process in Korea. The Deflection angle and the non-uniformity were investigated to analyze the airflow characteristics and the performance of cleanroom with variations of the cleanroom occupancy state, the filters' arrangement, and the floor return air system. From the numerical results, we found out that the airflow pattern of the cleanroom is more unidirectional and stable in the condition of at-rest than in the condition of as~built. It is due to that the equipments installed in the cleanroom play a role like partitions, which prevent the airflow from inclining toward the recirculation air duct. And it is needed to arrange the filter units parallel to the equipments array without a gap between them for maintaining the unidirectional airflow pattern. Finally, we knew that it is very important to install the partition like the eyelid above the equipment to keep the unidirectional airflow around the equipments and remove the contaminants quickly.

Dynamic characteristics of flexibly supported infinite beam subjected to an axial force and a moving load (이동하중과 축하중이 작용하는 유연한 기초위에 지지된 무한보의 동특성)

  • 홍동균;김광식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.56-68
    • /
    • 1982
  • This paper presents analytic solutions of defection and their resonance diagrams for a uniform beam of infinite length subjected to an constant axial force and moving transverse load simultaneously. Steady solutions are obtained by a time-independent coordinate moving with the load. The supporting foundation includes damping effects. The influences of the axial force, the damping coefficient and the load velocity on the beam response are studied. The limiting cases of no damping and critical damping are also investigate. The profiles of the deflection of the beam are shown graphically for several values of the load speed, the axial force and damping parameters. Form the results, following conclusions have been reached. 1. The critical velocity .THETA.cr decreases as the axial compressive force increases, but increases as the axial tensile force increase. 2. At the critical velocity .THETA.cr the deflection have a tendency to decrease as the axial tensile force increases and to increase gradually as the axial compressive force increases. 3. In case if relatively small dampings, the deflection increases suddenly as the velocity of the moving load approaches the critical velocity, and it reachs its maximum at the critical velocity, and it decreases and become greatly affected by the axial force as the velocity increases further. 4. in case of relatively large dampings, as the velocity increases the deflection decreases gradually and it is affected little by the axial load.

  • PDF

Dynamic Analysis of Boom Using Finite Element Method (유한 요소법을 이용한 붐대의 동특성 해석)

  • Han, Su-Hyun;Kim, Byung-Jin;Hong, Dong-Pyo;Tae, Sin-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.987-991
    • /
    • 2005
  • The Aerial platform Truck is widely used for work in high place with the aerial platform. The most important thing is that worker's safety and worker must be able to work with trustworthiness so it needs to be verified its stiffness, deflection of boom, and dynamic condition concerned with a rollover accident. It should have an analytical exactitude because it is directly linked with the worker safety. In this point, we are trying to develop a proper CAE analysis model concerned with a rollover safety, bending stress and deflection for load. The Aerial platform Truck have a dynamic characteristics by load and moving of boom in the work field, so its static and dynamic strength analysis, structural mechanics are very important. Therefore, we evaluate the safety of each boom to calculating its stress, deflection. A computer simulation program is used widely for doing applying calculation of stiffness and structural mechanics, then finally trying to find a optimum design of the Aerial platform Truck.

  • PDF

The Effects of Leading Edge Flap Deflection on Supersonic Cruise Performance of a Fighter Class Aircraft (전투기급 항공기 초음속 순항 성능에 미치는 앞전플랩 변위 효과)

  • Chung, In-Jae;Kim, Sang-Jin;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.899-904
    • /
    • 2007
  • During the conceptual design phase of fighter class aircraft, the high speed wind tunnel test with 1/20 scale wing-body-tail model has been conducted to investigate the effects of leading edge flap deflection on the supersonic cruise performance of the aircraft. To select the proper leading edge flap deflection for the wind tunnel test, the aerodynamic characteristics due to various leading edge flap deflections have been analyzed by using corrected supersonic panel method. Based on the results obtained from the experimental and numerical approaches, the effects of leading edge flap deflection have shown to be useful to enhance the supersonic cruise performance of fighter class aircraft.

The Study on the Development of Composite Robot Hand for TFT-LCD Glass Transport (대면적 TFT-LCD 유리기판 이송용 복합재료 로봇 손 개발에 관한 연구)

  • Choi, Gi-Han;Han, Chang-Woo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1357-1365
    • /
    • 2002
  • A robot hand is used to transport the glass substrate in TFT-LCD manufacturing process. Carbon/epoxy composite is one of the best materials for this kind of robot hand application, due to their lightweight, high stiffness, and good damping characteristics. Major requirement of the robot hand is given as allowable deflection under weight loading of glass substrate and robot hand itself. In this thesis, a carbon/epoxy robot hand was analyzed using finite element method and beam theory to determine the deflection of the hand under the loading that is equivalent to actual weight. Because natural frequency is one of the major interests in robot hand design for TFT-LCD manufacturing process, modal analysis is also conducted using finite element method and beam theory. A robot hand was manufactured, and actual deflection and natural frequency were measured to verify the analysis results and compliance to requirement. The test results showed good agreement with analysis results.

Interconnection Network for Routing Distributed Video Stream on Popularity - Independent Multimedia-on-Demand Server (PIMODS서버에서 분산 비디오스트림의 전송을 위한 상호연결망)

  • 임강빈;류문간;신준호;김상중;최경희;정기현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.35-45
    • /
    • 1999
  • This paper presents an interconnection network for load balancing on a multimedia server and proposes a simple probabilistic model of the interconnection network for analysing the traffic characteristics. Because the switch uses deflection algorithm for routing, the traffic load on the switch seriously affects deflection probability. In this paper, we trace the deflection probability as a function of the traffic load according to the model. By comparing the result with the empirical result, we prove that the model is useful for estimating the deflection probability and traffic saturation point against the amount of packets getting into the switch.

  • PDF

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

Analysis of Crack Width and Deflection Based on Nonlinear Bond Characteristics in Reinforced Concrete Flexural Members (비선형 부착 특성에 기반한 철근콘크리트 휨부재의 균열폭과 처짐 해석)

  • Lee, Gi-Yeol;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.459-467
    • /
    • 2008
  • This paper describes a proposal for average crack width and immediate deflection calculation in structural concrete members. The model is mathematically derived from actual bond stressslip relationships and tension stiffening effect between reinforcement and the surrounding concrete, and the actual strains of steel and concrete are integrated respectively along the embedded length between the adjacent cracks so as to obtain the difference in the axial elongation. With these, a model for average crack width and immediate deflection in reinforced concrete flexural members are proposed utilizing difference in the axial elongation and average steel strain and moment-curvature relationship with taking account of bond characteristics. The model is applied to the test specimens available in literatures, and the crack width and deflections predicted by the proposal equation in this study are closed to the experimentally measured data compared the current code provisions.

Load-deflection characteristics and plastic deformation of NiTi closed coil springs (수종의 니켈-티타늄 폐쇄형 코일 스프링의 하중-변위 특성 및 소성 변형 비교)

  • Son, Ah-Young;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.39 no.5
    • /
    • pp.310-319
    • /
    • 2009
  • Objective: NiTi closed coil springs were reported to have relatively constant unloading forces. However, the characteristics of NiTi closed coil springs from various manufacturers have not been elucidated. The purpose of this study was to compare load-deflection characteristics of various NiTi closed coil springs and to find out the optimal range of extension. Methods: Seven kinds of NiTi closed coil springs from five manufacturers were tested. Load deflection curves were obtained at extension ranges from 2 mm to 30 mm. Also, springs were kept extended during a 4 week period, and then load deflection curves were obtained again. Results: Sentalloy (Tomy) and Jinsung blue (Jinsung) showed superelasticity in every extension ranges tested and showed plastic deformation of less than 1 mm. Ni-Ti (Ormco) showed superelasticity only after the springs were extended at or more than 10 mm, thereby meaning that clinicians should extend these springs at or more than 10 mm to utilize the superelasticity. Orthonol (RMO) and Nitanium (Ortho Organizers) did not show superelasticity. After 4 weeks of extension, all springs showed plastic deformation less than 1 mm when the extension was at or under 25 mm. Conclusions: The superelastic behavior of NiTi closed springs were different among various NiTi spring products, and some NiTi closed springs failed to show superelasticity.