• Title/Summary/Keyword: Deflection angle

Search Result 300, Processing Time 0.025 seconds

A study on friction and stress analysis of wedge mount leveler in Semi-Conductor Sub-Fab (반도체 Sub-Fab 용 웨지 마운트 레벨러(Wdge Mount Leveler)의 마찰과 응력에 관한 연구)

  • Min, Kyung-Ho;Song, Ki-Hyeok;Hong, Kwang-Pyo
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.25-28
    • /
    • 2017
  • Semiconductor equipment manufacturers desire to enhance efficiency of Sub Fab to increase semiconductor productivity. For this reason, Sub Fab equipment manufacturers are developing Integrated System that combined modules with multiple facilities. Integrated System is required to apply Mount Leveler of Wedge Type in compliance with weight increase compared with existing single equipment and product shape change. This thesis analyzes main design variables of components of Wedge Mount Leveler and carries out structure analysis using ANSYS, finite element analysis program Analysis shows that main design variables of components of Wedge Mount Leveler has self-locking condition by friction force of Wedge and adjusting bolt. Each friction force hinges upon Wedge angle and Friction Coefficient of contact surface and upon the thread angle and Friction Coefficient of contact surface. Also, as a result of carrying out structure analysis of Wedge Mount Leveler, deflection and stress appears in different depending on the height of the level.

Numerical Study on an E-D Nozzle Characteristics with Various Pintle Inflection Angles (핀틀 변곡 각도에 따른 E-D 노즐 특성에 대한 전산수치해석 연구)

  • Park, Sanghyeon;Moon, Taeseok;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.19-27
    • /
    • 2018
  • In this study, a numerical study was conducted to characterize the E-D nozzle which changes according to the nozzle pressure ratios. Three different numerical analysis models were designed by changing the pintle inflection angles. When the nozzle pressure ratio is low, the outside air flows into the E-D nozzle to form an open flow field. As the nozzle pressure ratio increases, the flow transition occurs to become the closed flow field where the recirculation region is isolated inside the nozzle. Also, the highest thrust coefficient was obtained in the analytical model with high pintle inflection angle at all nozzle pressure ratios.

Performance Assessment of the Dual-Throat Nozzle Thrust Vector Control in a 3D Rectangular Nozzle (3D 직사각형 노즐에서 이중 스 로트 노즐 스러스트 벡터 제어의 성능 평가)

  • Wu, Kexin;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.12-24
    • /
    • 2020
  • The dual-throat nozzle is an extremely effective method in the thrust vectoring control field, utilizing another convergent section to connect with the divergent part of the conventional convergent-divergent nozzle. In the present research, the numerical simulation is conducted to investigate the effects of the injection angle on thrust vectoring performance in a 3D supersonic nozzle. Five injection angles are discussed and core performance variations are analyzed, including the deflection angle, injected mass flow ratio, system resultant thrust ratio, efficiency, Mach number contour and streamline on the symmetry plane, and Mach number contours at different slices. Meaningful conclusions are offered for fighter jet designers.

A Study on 4DOF Ship Dynamics in Maneuver by Principal Component Analysis (주성분 분석을 통한 선박 조종 중 4자유도 동역학 특성 연구)

  • Dong-Hwan Kim;Minchang Kim;Seungbeom Lee;Jeonghwa Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.29-43
    • /
    • 2024
  • The present study concerns a feasibility study for applying principal component analysis to ship dynamics in maneuver. Using the four degrees of freedom standard modular model for ship dynamics maneuver simulations of large angle zigzag tests with rudder deflection angle variations are conducted. The datasets of ship motion, hydrodynamic force, and moment during the maneuver are acquired to identify the principal modes. The covariance matrix of obtained ship dynamics variables shows a strong linear correlation between the motion, hydrodynamic force, and moment, except the surge force. Four eigenvectors of the covariance matrix are selected as the principal modes of ship dynamics. Using the principal modes, ship motion in turning circle and zigzag tests is reconstructed, showing good agreement with the original data.

Seismic bearing capacity of skirted footings using finite element analysis

  • Rajesh P. Shukla;Prabir Kumar Basudhar
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Studies pertaining to the seismic bearing capacity analysis of skirted footings using the pseudo-static approach for estimation of the earthquake force in association with finite element method have been presented in this paper. An attempt has been made to explain the behaviors of the skirted footings by means of failure patterns obtained for rigid and flexible skirts. The skirts enhance the seismic bearing to some extent with an increase in seismic loading, after which it decreases nonlinearly. The effectiveness of skirts increases initially to some extent with an increase in seismic loading, after which it decreases nonlinearly. Other parameters that inversely affect the effectiveness of skirts are the depth of footing and the internal friction angle of the soil. The detailed finite element analysis regarding the various failure patterns of skirted footings under seismic forces shows the failure mechanism changes from a general shear failure to local shear failure with an increase in seismic force. An opposite trend has been observed with the increase in the angle of internal friction of the soil. The obtained analysis results suggest that a rigid skirted footing behaves similar to a conventional strip footing under seismic and static loadings. The excessive deflection of flexible skirts under combined gravity and seismic loading renders them relatively ineffective than rigid skirts.

Development of an Autonomous Guidance System Based on an Electric Vehicle for Greenhouse (온실내 작업 가능한 전동작업차의 자동추종 주행시스템 개발)

  • Hong, Young-Ki;Lee, Dong-Hoon;Shin, Ik-Sang;Kim, Sang-Cheol;Tamaki, Koji
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.391-396
    • /
    • 2009
  • The percentage of those aged 60 and over is 43.5% among our country's 3,186 thousands farming population, so farm village is getting aging society rapidly. Moreover agricultural competitiveness has being weakened due to labor shortage by degradation in quality of labor configuration from elderly porson. For realisms easy workability, we developed a motor vehicle for agricultural activity. The vehicle has an automatic guidance system which could follows a track of magnetic tape on the floor for easy moving to given working position. We collected data from two guidance sensors, located on front and rear end of the vehicle and calculated displacement and angle deviation from the track. This traveling system was stably controlled with processing information deflection S, angle of deviation, D and angle velocity, Vt = $k_1D$ - $k_2S$ from two guidance sensors attached on front and rear of th motor vehicle. Also this system have been tested under various condition of $k_1$, $k_2$ for comparison on both stepped and turning routes. The results show that traveling performance is best at $k_1$=0.7, $k_2$=3.

STRONG INFLUENCE OF THE GALACTIC MAGNETIC FIELD ON THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS

  • KIM, JIHYUN;KIM, HANG BAE;RYU, DONGSU
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.549-552
    • /
    • 2015
  • The galactic magnetic field (GMF) and the intergalactic magnetic field (IGMF) affect the propagation of ultra-high energy cosmic rays (UHECRs) from the source to us. Here we examine the influences of the GMF/IGFM and the dependence of their sky distribution on galactic latitude, b. We analyze the correlation between the arrival direction (AD) of UHECRs observed by the Pierre Auger Observatory and the large-scale structure of the universe in regions of sky divided by b. Specifically, we compare the AD distribution of observed UHECRs to that of mock UHECRs generated from a source model constructed with active galactic nuclei. Our source model has the smearing angle as a free parameter that reflects the deflection angle of UHECRs from the source. The results show that larger smearing angles are required for the observed distribution of UHECRs in lower galactic latitude regions. We obtain, for instance, a $1{\sigma}$ credible interval for smearing angle of $0^{\circ}{\leq}{\theta}_s{\leq}72^{\circ}$ at high galactic latitudes, $60^{\circ}$ < $\left|{b}\right|{\leq}90^{\circ}$, and of $75^{\circ}{\leq}{\theta}_s{\leq}180^{\circ}$, $-30^{\circ}{\leq}b{\leq}30^{\circ}$, at low galactic latitudes, respectively. The results show that the influence of the GMF is stronger than that of the IGMF. In addition, we can estimate the strength of GMFs by these values; if we assume that UHECRs would have heavier nuclei, the estimated strengths of GMF are consistent with the observational value of a few ${\mu}G$. More data from the future experiments may make UHECR astronomy possible.

Minimization of the Bending Deflection of the Human-powered Aircraft Wing Induced by Change of an Incidence Angle (인간동력항공기의 붙임각 변화에 따른 날개 끝단 굽힘변위 최소화 연구)

  • Lee, Chang-Bae;Im, Byeong-Uk;Joo, Hyun-Shik;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.98-106
    • /
    • 2019
  • Human-powered aircraft has wings with a shape of high aspect ratio which results in large bending displacement. This paper aims to improve the structural limitation by changing an incidence angle of the wings. The tendency change of bending displacement at the wing tip is observed assuming that airfoil and cross-sectional shape of the wing is fixed, and amount of the total lift generated is satisfied. Quasi-steady lift, drag and the aerodynamic moment are distributed with regard to sections of the wing. Those are analyzed using a numerical nonlinear lifting-line method and 'geometrically exact beam' (GEB) program in EDISON. 'Variational Asymptotic Beam Sectional Analysis' (VABS) program is used to check if the present wing is structurally solid. Furthermore, the predicted tip deflections are verified by comparing with DYMORE.

Perch Landing Assisted by Thruster (PLAT): Concept and Trajectory Optimization

  • Tahk, Min-Jea;Han, Seungyeop;Lee, Byung-Yoon;Ahn, Jaemyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.378-390
    • /
    • 2016
  • A concept of the perch landing assisted by thruster (PLAT) for a fixed wind aircraft is proposed in this paper. The proposed concept is applicable to relatively large unmanned aerial vehicles (UAV), hence can overcome the limitation of existing perch landing technologies. A planar rigid body motion of an aircraft with aerodynamic and thruster forces and moments is modeled. An optimal control problem to minimize the fuel consumption by determining the histories of thruster and elevator deflection angle with specified terminal landing condition is formulated and solved. A parametric study for various initial conditions and thruster parameters is conducted to demonstrate the practicability of the proposed concept.

Effect of The Bending Strain of FRP Tube for Composite Bushing with Winding Tension (와인딩 장력이 composite 부싱용 FRP tube의 굽힘변형에 미치는 영향)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.380-381
    • /
    • 2009
  • This paper describes effect of the bending strain of FRP tube for composite bushing with winding tension. The composite bushing can be formed, by adding silicone rubber sheds to a tube of composite materials. The FRP tube is internal insulating part of a composite bushing and is designed to ensure the mechanical characteristics. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As winding tension is increased glass contents was increased in the range of 70.4~76.6%. In the bending test, winding tension is increased residual displacement was decreased in the range of 14.0~12.2 mm.

  • PDF