DOI QR코드

DOI QR Code

Seismic bearing capacity of skirted footings using finite element analysis

  • Rajesh P. Shukla (Department of Civil Engineering, NIT Srinagar) ;
  • Prabir Kumar Basudhar (Department of Civil Engineering, IIT Kanpur)
  • Received : 2024.03.20
  • Accepted : 2024.08.26
  • Published : 2024.10.10

Abstract

Studies pertaining to the seismic bearing capacity analysis of skirted footings using the pseudo-static approach for estimation of the earthquake force in association with finite element method have been presented in this paper. An attempt has been made to explain the behaviors of the skirted footings by means of failure patterns obtained for rigid and flexible skirts. The skirts enhance the seismic bearing to some extent with an increase in seismic loading, after which it decreases nonlinearly. The effectiveness of skirts increases initially to some extent with an increase in seismic loading, after which it decreases nonlinearly. Other parameters that inversely affect the effectiveness of skirts are the depth of footing and the internal friction angle of the soil. The detailed finite element analysis regarding the various failure patterns of skirted footings under seismic forces shows the failure mechanism changes from a general shear failure to local shear failure with an increase in seismic force. An opposite trend has been observed with the increase in the angle of internal friction of the soil. The obtained analysis results suggest that a rigid skirted footing behaves similar to a conventional strip footing under seismic and static loadings. The excessive deflection of flexible skirts under combined gravity and seismic loading renders them relatively ineffective than rigid skirts.

Keywords

References

  1. Al-Aghbari, M.Y. and Mohamedzein, Y.A. (2006), "Improving the performance of circular foundations using structural skirts", Proceedings of the Institution of Civil Engineers-Ground Improvement, 10(3), 125-132. https://doi.org/10.1680/grim.2006.10.3.125. 
  2. Al-Aghbari, M.Y. and Mohamedzein, Y.A. (2018), "The use of skirts to improve the performance of a footing in sand", Int. J. Geotech. Eng., 1-8. https://doi.org/10.1080/19386362.2018.1429702. 
  3. Al-Aghbari, M.Y. and Dutta, R.K. (2008), "Performance of square footing with structural skirt resting on sand", Geomech. Geoeng., 3(4), 271-277. https://doi.org/10.1080/17486020802509393. 
  4. Al-Shyoukhi, T., Elmeligy, M. and Altahrany, A.I. (2023),. "Experimental and numerical parametric studies on inclined skirted foundation resting on sand", Civil Eng. J., 9(7), 1795-1807. https://doi.org/10.28991/CEJ-2023-09-07-017. 
  5. Azzam, W.R. (2015), "Finite element analysis of skirted foundation adjacent to sand slope under earthquake loading",. HBRC J., 11(2), 231-239. https://doi.org/10.1016/j.hbrcj.2014.04.001. 
  6. Azzam, W.R. and ElWakil, A.Z. (2015), "Experimental and numerical studies of circular footing resting on confined granular subgrade adjacent to slope", Int. J. Geomech., https://doi.org/10.1061/(ASCE)GM.1943-5622.0000500,04015028. 
  7. Bashir, K., Shukla, R. and Jakka, R.S. (2023), "Skirted footing for enhancing load-carrying capacity", Proceedings of the Geo-Congress 2023, 554-563. https://doi.org/10.1061/9780784484685.056. 
  8. Bishop, A.W. (1966), "The strength of soils as engineering materials",. Geotechnique, 16(2), 91-130. https://doi.org/10.1680/geot.1966.16.2.91. 
  9. Biswas, S. and Mittal, S. (2017), "Square footing on geocell reinforced cohesionless soils", Geomech. Eng., 13(4), 641-651. https://doi.org/10.12989/gae.2017.13.4.641. 
  10. Bransby, M.F. and Yun, G.J. (2009), "The undrained capacity of skirted strip foundations under combined loading",. Geotechnique, 59(2), 115-125. https://doi.org/10.1680/geot.2007.00098. 
  11. Bransby, M.F. and Randolph, M.F. (1999), "The effect of skirted foundation shape on response to combined V-M-H Loadings",. Int. J. Offshore Polar Eng., 9(3), 214-218. 
  12. Chakraborty, D. and Kumar, J. (2013), "Bearing capacity of foundations on slopes", Geomech. Geoeng., 8(4), 274-285. 
  13. Chen, W.F. and Liu, X.L. (2012), Limit analysis in soil mechanics.
  14. Chen, W. and Randolph, M.F. (2007), "External radial stress changes and axial capacity for suction caissons in soft clay", Geotechnique, 57(6), 499-511. https://doi.org/10.1680/geot.2007.57.6.499. 
  15. Chetia N. and Saikia, B.D. (2015), "Improvement of bearing capacity of model footing with structural skirts on soft ground",. Proceedings of the 50th IGC, 17-19 December 2015, Pune, Maharashtra, India. 
  16. Demir, A. and Sarici, T. (2017), "Bearing capacity of footing supported by geogrid encased stone columns on soft soil", Geomech. Eng., 12(3), 417-439. https://doi.org/10.12989/gae.2017.12.3.417. 
  17. Eid, H.T. (2013), "Bearing capacity and settlement of skirted shallow foundations on sand", Int. J. Geomech., 13(5), 645-652. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000237. 
  18. EL Wakil, A.Z. (2013), "Bearing capacity of skirt circular footing on sand", Alexandria Eng. J., 52, 359-364. https://doi.org/10.1016/j.aej.2013.01.007. 
  19. Gray, D.H. and Al-Refeai, T. (1986), "Behavior of fabric vs. fiber-reinforced sand", J. Geotech. Eng. ASCE, 112(8), 804-820. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(804). 
  20. Hu, Y., Randolph, M.F. and Watson, P.G. (1999), "Bearing response of skirted foundation on nonhomogeneous soil", J. Geotech. Geoenviron. Eng., 125(11), 924-935. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(924). 
  21. Huynh, Q.T., Lai, V.Q., Shiau, J., Keawsawasvong, S., Mase, L.Z. and Tra, H.T. (2022), "On the use of both diaphragm and secant pile walls for a basement upgrade project in Vietnam", Innov. Infrastruct. Solut., 7(1), 17. https://doi.org/10.1007/s41062-021-00625-7. 
  22. Keawsawasvong, S. and Ukritchon, B. (2017), "Undrained stability of an active planar trapdoor in non-homogeneous clays with a linear increase of strength with depth", Comput. Geotech., 81, 284-293. https://doi.org/10.1016/j.compgeo.2016.08.027. 
  23. Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behavior of square and rectangular skirted footings resting on sand", Geomech. Eng., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689. 
  24. Krabbenhoft, K., Lyamin, A.V. and Sloan, S.W. (2007), "Formulation and solution of some plasticity problems as conic programs", Int. J. Solids Struct., 44(5), 1533-1549. https://doi.org/10.1016/j.ijsolstr.2006.06.036. 
  25. Kumar, J. (2003), "Nγ for rough strip footing using the method of characteristics", Can. Geotech. J., 40(3), 669-674. https://doi.org/10.1139/t03-009. 
  26. Kumar, J. and Khatri, V. (2008), "Effect of footing roughness on lower bound Nγ values", Int. J. Geomech. ASCE, 8(3), 176-187. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:3(176). 
  27. Lemaitre, J. (Ed.). (2001), Handbook of materials behavior models, three-volume set: Nonlinear models and properties. 
  28. Lyamin, A.V., Salgado, R., Sloan, S.W. and Prezzi, M. (2007), "Two-and three-dimensional bearing capacity of footings in sand", Geotechnique, 57(8), 647-662. https://doi.org/10.1680/geot.2007.57.8.647. 
  29. Mana, D.S., Gourvenec, S.M., Randolph, M.F. and Hossain, M.S. (2012), "Failure mechanisms of skirted foundations in uplift and compression", Int. J. Phys. Model. Geotech., 12(2), 47-62. https://doi.org/10.1680/ijpmg.11.00007. 
  30. Mana, D.S., Gourvenec, S.M., Randolph, M.F. and Hossain, M.S. (2012), "Failure mechanisms of skirted foundations in uplift and compression", Int. J. Phys. Model. Geotech., 12(2), 47-62. https://doi.org/10.1680/ijpmg.11.00007. 
  31. Mana, D.S., Gourvenec, S. and Martin, C.M. (2013), "Critical skirt spacing for shallow foundations under general loading", J. Geotech. Geoenviron. Eng., 139(9), 1554-1566. doi.org/1 https://doi.org/10.1061/(ASCE)GT.1943-5606.0000882. 
  32. Mana, D.S., Gourvenec, S. and Randolph, M.F. (2014), "Numerical modelling of seepage beneath skirted foundations subjected to vertical uplift", Comput. Geotech., 55, 150-157. https://doi.org/10.1016/j.compgeo.2013.08.007. 
  33. Martin, C.M. (2005), "Exact bearing capacity calculations using the method of characteristics", Proc. IACMAG. Turin, 441-450. 
  34. Mase, L.Z., Putri, M.A., Edriani, A.F., Lai, V.Q. and Keawsawasvong, S. (2023), "Prediction of the bearing capacity of strip footing at the homogenous sandy slope based on the finite element method and multivariate adaptive regression spline", Transport. Infrastruct. Geotechnol., 1-27. https://doi.org/10.1007/s40515-023-00334-x. 
  35. Mase, L.Z., Saputra, J., Edriani, A.F. and Keawsawasvong, S. (2022), "Finite element analysis to estimate bearing capacity of strip footing in coastal sandy soils in Bengkulu City, Indonesia", Eng. J., 26(5), 59-75. https://doi.org/10.4186/ej.2022.26.5.59. 
  36. Meyerhof, G.G. (1965), "Shallow foundations", J. Soil Mech. Found. Eng. ASCE, 91(2), 21-31. doi.org/1 https://doi.org/10.1061/JSFEAQ.0000719. 
  37. Moradi, G., Abdolmaleki, A. and Soltani, P. (2019), "Small-and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method", Geomech. Eng., 18(3), 315-328. https://doi.org/10.12989/gae.2019.18.3.315. 
  38. Nazir, A.K. and Azzam, W.R. (2010), "Improving the bearing capacity of footing on soft clay with sand pile with/without skirt", Alexandria Eng. J., 49, 371-377. 
  39. Optum G2. Optum Computational Engineering, Copenhagen, Denmark. 
  40. Randolph, M.F. and Watson, P.G. (1999), "Bearing response of skirted foundation on nonhomogeneous soil", J. Geotech. Geoenviron. Eng. ASCE, 924-934. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:11(924). 
  41. Saleh, N.M., Alsaied, A.E. and Elleboudy, A.M. (2008), "Behavior of skirted strip footing under eccentric load", Proceedings of the 17th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 586-589. 
  42. Shukla, R.P. and Jakka, R.S. (2022), "Bearing capacity and failure mechanism of skirted footings", Geomech. Eng., 30(1), 51-66. https://doi.org/10.12989/gae.2022.30.1.051. 
  43. Shukla, R.P. and Jakka, R.S. (2023), "Failure mechanism and bearing capacity of inclined skirted footings", Geomech. Eng., 35(1), 41-54. https://doi.org/10.12989/gae.2023.35.1.041. 
  44. Shukla, R.P. (2022), "Skirted footing subjected to inclined loading resting on cohesive soils", Mag. Civil Eng., 108(2), 1-14. https://doi.org/10.34910/MCE.110.12. 
  45. Shukla, S.K. (2017). Fundamentals of Fibre-Reinforced Soil Engineering, Springer Nature Singapore Pld. 
  46. Sloan, S.W. (2013), "Geotechnical stability analysis", Geotechnique, 63(7), 531-571. https://doi.org/10.1680/geot.12.RL.001. 
  47. Stergiou, T., Terzis, D. and Georgiadis, K. (2015), "Undrained bearing capacity of tripod skirted foundations under eccentric loading", Geotechnik, 38(1), 17-27. https://doi.org/10.1002/gete.201400029. 
  48. Tani, K. and Craig, W.H. (1995), "Bearing capacity of circular foundations on soft clay of strength increasing with depth", Soils Found., 35(4), 21-35. https://doi.org/10.3208/sandf.35.4_21. 
  49. Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley, New York. 
  50. Ukritchon, B., Whittle, A. and Klangvijit, C. (2003), "Calculations of bearing capacity factor Nγ using numerical limit analyses",. J. Geotech. Geoenviron. Eng., 129(5), 468-474. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(468). 
  51. Vulpe, C. (2015), "Design method for the undrained capacity of skirted circular foundations under combined loading: Effect of deformable soil plug", Geotechnique, 65(8), 669-683. https://doi.org/10.1680/geot.14.P.200. 
  52. Yin, J.H., Wang, Y.J. and Selvadurai, A.P.S. (2001), "Influence of nonassociativity on the bearing capacity of a strip footing", J. Geotech. Geoenviron. Eng., 127(11), 985-989. 
  53. Yun, G. and Bransby, M.F. (2007b), "The undrained vertical bearing capacity of skirted foundations", Soils Found., 47(3), 493-506. https://doi.org/10.3208/sandf.47.493. 
  54. Zhang, P. and Ding, H. (2011), "Bearing capacity of the bucket spudcan foundation for offshore jack-up drilling platforms", Petroleum Explor. Development, 38(2), 237-242. https://doi.org/10.1016/S1876-3804(11)60029-3. 
  55. Zhu, D. (2000), "The least upper-bound solutions for bearing capacity factor Nγ", Soils Found., 40(1), 123-129. https://doi.org/10.3208/sandf.40.123.