• Title/Summary/Keyword: Deflection Characteristics

Search Result 633, Processing Time 0.033 seconds

The Stiffness Analysis of Circular Plate Regarding the Length of Supporting End Using Elastic Beam Theory (탄성보 이론을 적용한 원형평판의 지지단길이 변화에 따른 강성도 해석)

  • 한동섭;한근조;심재준;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.109-116
    • /
    • 2004
  • This paper investigates the characteristics of deflection for circular plate that has same supporting boundary condition along the width direction of plate according to the length change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting end to radius of circular plate.

Form Error Prediction in Side Wall Milling Considering Tool Deflection (측벽 엔드밀 가공에서 공구 변형을 고려한 형상 오차 예측)

  • 류시형;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.43-51
    • /
    • 2004
  • A method for form error prediction in side wall machining with a flat end mill is suggested. Form error is predicted directly from the tool deflection without surface generation by cutting edge locus with time simulation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacturing. This study contributes to real time surface shape estimation and cutting process planning for the improvement of form accuracy.

Experimental study of the sound quality performance and improvement of magnetic fluid speaker (자성유체 스피커의 음질 성능 및 향상에 관한 실험적 연구)

  • Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6993-6997
    • /
    • 2014
  • The aim of this study was to experimentally investigate the sound quality characteristics, such as sound deflection, sound pressure level and frequency characteristics of a magnetic type speaker in an anechoic chamber to overcome the sound quality and voice-coil temperature problems. To accomplish this, the sound quality performance of the magnetic type speaker was tested according to the magnetic fluid amount and magnetic field intensity. The sound deflection, sound pressure level, and frequency characteristics were measured using the Smarrt program. As a result, at a magnetic fluid amount of 2.4 ml, the sound deflection and the sound pressure level of the magnetic type speaker were enhanced by comparing with those of the general type speaker. The frequency characteristics and the sound pressure level of the magnetic type speaker were enhanced greatly with increasing magnetic field intensity from 8.06 mT to 9.10 mT. In addition, the sound deflection of the magnetic type speaker was 0.01% lower than that of the general type speaker.

Effects of reversing the coiling direction on the force-deflection characteristics of nickel-titanium closed-coil springs

  • Park, Hwan-Hyung;Jung, Suk-Hwan;Yoon, Juil;Jee, Kwang Koo;Han, Jun Hyun;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.49 no.4
    • /
    • pp.214-221
    • /
    • 2019
  • Objective: To investigate the effects of reversing the coiling direction of nickel-titanium closed-coil springs (NiTi-CCSs) on the force-deflection characteristics. Methods: The samples consisted of two commercially available conventional NiTi-CCS groups and two reverse-wound NiTi-CCS groups (Ormco-Conventional vs. Ormco-Reverse; GAC-Conventional vs. GAC-Reverse; n = 20 per group). The reverse-wound NiTi-CCSs were directly made from the corresponding conventional NiTi-CCSs by reversing the coiling direction. Tensile tests were performed for each group in a temperature-controlled acrylic chamber ($37{\pm}1^{\circ}C$). After measuring the force level, the range of the deactivation force plateau (DFP) and the amount of mechanical hysteresis (MH), statistical analyses were performed. Results: The Ormco-Reverse group exhibited a significant shift of the DFP end point toward the origin point (2.3 to 0.6 mm), an increase in the force level (1.2 to 1.3 N) and amount of MH (1.0 to 1.5 N) compared to the Ormco-Conventional group (all p < 0.001), which indicated that force could be constantly maintained until the end of the deactivation curve. In contrast, the GAC-Reverse group exhibited a significant shift of the DFP-end point away from the origin point (0.2 to 3.3 mm), a decrease in the force level (1.1 to 0.9 N) and amount of MH (0.6 to 0.4 N) compared to the GAC-Conventional group (all p < 0.001), which may hinder the maintenance of force until the end of the deactivation curve. Conclusions: The two commercially available NiTi-CCS groups exhibited different patterns of change in the force-deflection characteristics when the coiling direction was reversed.

Mechanical Characteristics of MLCA Anodic Bonded on Si wafers (실리콘기판위에 양극접합된 MLCA의 기계적 특성)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.160-163
    • /
    • 2003
  • This paper describes on anodic bonding characteristics of MLCA(Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100 %, input power $1\;/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-008 %FS. Moreover, any damages or separation of MICA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MICA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

A Study on the Deflection of the Circular Plate with a Linear Change of Thickness using the Elastic Beam Theory (보이론을 적용한 선형적 두께변화를 갖는 원형평판의 처짐에 관한 연구)

  • Han D.S.;Han G.J.;Kim T.H.;Shim J.J.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1695-1698
    • /
    • 2005
  • In this paper we investigate characteristics of deflection for circular plate with the non-symmetric boundary condition that is the boundary condition partly supported along the width direction of plate according to the length change of supporting end. For two boundary conditions such as simple supported and completely clamped boundary conditions, this study derives the maximum deflection formula of the circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with the change of width and thickness along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting end to radius of circular plate.

  • PDF

Relationship between the CMOD and the Load-Line Deflection of Concrete (콘크리트의 균열개구 변위와 하중방향 변위관계)

  • 김석기
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.183-194
    • /
    • 1997
  • Traditional displacmir~nt measurement included an extrancous and cvrntlc. portmn due to test setup and support crushing. The magnitudc of this erroneous deformation was found to be of the same order as the actual displacement, leading to inaccurate determinations of fracture parameters. To overcome this problem, the load-CMOD relationship is a more reliable parameter for determining the fracture characteristics because it is unaffected by the specimen setup and any support crushing. An important step towards the use of load-(:MOD concept as a key fracture parameter depends on relating the CMODto the traditional load-line deflection. This investigation found that there was an unique linear relationship between the CMOD and the load-line deflection. The exact numeric value of relationship between the CMOD and the deflection. that is, the slope ofthe line, is discovered to be a material property. The relationship finds a problem with the existing IZIL,EM recommendations for. measuring the fracture energy of concrete. A proposal to correct the problem is made.

Characteristics of Surface Morphology According to the Pulse Change When Wire-cut Electrical discharge Machining (와이어컷 방전가공시 펄스변화에 따른 표면형상 특성)

  • 이재명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.537-542
    • /
    • 2000
  • Wire deflection, surface roughness and roundness were observed on changing discharge time for electrical discharge machining(EDM) of STD-11 in various conditions of thickness. The wire deflection was decreased as increasing discharge time and wire tension. The deflection is the smallest at the speed of wire of 10.6m/min and the water specific resistivity of 5k$\Omega$.cm. The deflection is found to be decreased as increasing dwell time. But if the water pressure is high, it is found not to be changed after the vibration of 4sec. The component of copper(Cu) and zinc(Zn), which is the main material of wire electrode, is observed for rough wire-cutting EDM of STD-11. This phenomena is found to be similar in spite of the change of EDM energy level. But it will be improved by changing the material and the shape of wire. The roundness of middle is found to be worse than that of upper and it is increased as the thickness of material is increased.

  • PDF

Development of a Design System for a Cable Tray (케이블 트레이 설계시스템 개발)

  • Choi, Du-Soon;Choi, WooSeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.89-96
    • /
    • 2017
  • A cable tray is a structure made of metal or a non-combustible material that supports cables in the electrical wiring of buildings. Cable trays should be developed to meet the various requirements of the construction site. In this study, a design system was developed to calculate the maximum support load and the maximum deflection according to the cross-sectional shape of the cable tray. The cross-sections of cable trays were modeled by combining linear and arc elements, and cross-sectional characteristics such as the 2nd moment of area were calculated. The distributed load and the concentrated load were applied to the cable tray using the Euler beam theory, and then the deflection profiles and maximum stress were calculated. To verify the developed system, deflection distributions and maximum stresses for two types of cable trays were calculated and compared. The maximum deflection and maximum stress errors calculated from the developed system were found to be less than 4% compared with numerical analysis results.

The Characteristic Analysis of Leaf Springs with Large Free Camber and without Spring Eye (아이부를 갖지 않고 자유고가 큰 겹판스프링의 특성해석)

  • Choi, Sun-Jun;Kwon, Hyuk-Hong;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.88-97
    • /
    • 1995
  • The leaf spring is used in the suspension of most buses and trucks due to its compactness, which reduces the shock-force and the vibration from the road, and increases passenger comfortability and carlife. Of the various kinds of leaf springs, the leaf spring without eyes can be found easily in the heavy duty truck, and has different characteristics to the leaf spring with eyes in the case of large free camber. Because of radius change, the leaf without eyes slips on the supports, which makes the deflection. The difference is due to this deflection. In this paper, we show the general method of characteristic analysis, for example, Pandan method, can be no more applicable to these springs. Thus considering the geometry deflection by slip, we have developed the equation of the characteristic of the leaf spring without eyes and prove the effectiveness of this equation by experiment. From the result, at large camber the slip deflection is large and as camber smaller, this is smaller. At the camber behind some value, the effect of slip no longer influence to the characteristic of leaf springs.

  • PDF