• Title/Summary/Keyword: Defective rate

Search Result 158, Processing Time 0.028 seconds

Tolerance Computation for Process Parameter Considering Loss Cost : In Case of the Larger is better Characteristics (손실 비용을 고려한 공정 파라미터 허용차 산출 : 망대 특성치의 경우)

  • Kim, Yong-Jun;Kim, Geun-Sik;Park, Hyung-Geun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • Among the information technology and automation that have rapidly developed in the manufacturing industries recently, tens of thousands of quality variables are estimated and categorized in database every day. The former existing statistical methods, or variable selection and interpretation by experts, place limits on proper judgment. Accordingly, various data mining methods, including decision tree analysis, have been developed in recent years. Cart and C5.0 are representative algorithms for decision tree analysis, but these algorithms have limits in defining the tolerance of continuous explanatory variables. Also, target variables are restricted by the information that indicates only the quality of the products like the rate of defective products. Therefore it is essential to develop an algorithm that improves upon Cart and C5.0 and allows access to new quality information such as loss cost. In this study, a new algorithm was developed not only to find the major variables which minimize the target variable, loss cost, but also to overcome the limits of Cart and C5.0. The new algorithm is one that defines tolerance of variables systematically by adopting 3 categories of the continuous explanatory variables. The characteristics of larger-the-better was presumed in the environment of programming R to compare the performance among the new algorithm and existing ones, and 10 simulations were performed with 1,000 data sets for each variable. The performance of the new algorithm was verified through a mean test of loss cost. As a result of the verification show, the new algorithm found that the tolerance of continuous explanatory variables lowered loss cost more than existing ones in the larger is better characteristics. In a conclusion, the new algorithm could be used to find the tolerance of continuous explanatory variables to minimize the loss in the process taking into account the loss cost of the products.

Developing a Quality Risk Assessment Model for Product Liability Law (제조물 책임(PL)법 대응을 위한 품질 리스크 진단 모델 개발)

  • Oh, Hyung Sool
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.27-37
    • /
    • 2017
  • As the global uncertainty of manufacturing has increased and the quality problem has become global, the recall has become a fatal risk that determines the durability of the company. In addition, as the convergence of PSS (product-service system) product becomes common due to the development of IT convergence technology, if the function of any part of hardware or software does not operate normally, there will be a problem in the entire function of PSS product. In order to manage the quality of such PSS products in a stable manner, a new approaches is needed to analyze and manage the hardware and software parts at the same time. However, the Fishbone diagram, FTA, and FMEA, which are widely used to interpret the current quality problem, are not suitable for analyzing the quality problem by considering the hardware and software at the same time. In this paper, a quality risk assessment model combining FTA and FMEA based on defect rate to be assessed daily on site to manage quality and fishbone diagram used in group activity to solve defective problem. The proposed FTA-FMEA based risk assessment model considers the system structure characteristics of the defect factors in terms of the relationship between hardware and software, and further recognizes and manages them as risk. In order to evaluate the proposed model, we applied the functions of ITS (intelligent transportation system). It is expected that the proposed model will be more effective in assessing quality risks of PSS products because it evaluates the structural characteristics of products and causes of defects considering hardware and software together.

A study on the development of Gas-Vent Automatic Exchange Machine with Vision System (영상정보를 이용한 가스벤트자동교환 장치)

  • Kwon, Jang-Woo;Hong, Jun-Eui;Yoon, Dong-Eop;Kil, Gyung-Suk;Lee, Dong-Hoon;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1141-1149
    • /
    • 2007
  • This paper describes two major techniques; image processing and gas vent insert and rejection control, for efficient gas vent exchange and holes detecting on the shoes mold. The key idea is to detect holes on the mold to select which holes to insert and to reject automatically guide center of hole's position. This allows us to save labor time while minimizing defective rate of PU shoes mold forming and production costs for gas vent exchange such as insertion and rejection.. Our experimental results have demonstrated that the hole's detection and gasvent exchange mechanism are more efficient and provide accurate mechanism to mitigate risks of vent injection/rejection failures.

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.

A Small GTPase RHO2 Plays an Important Role in Pre-infection Development in the Rice Blast Pathogen Magnaporthe oryzae

  • Fu, Teng;Kim, Joon-Oh;Han, Joon-Hee;Gumilang, Adiyantara;Lee, Yong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.470-479
    • /
    • 2018
  • The rice blast pathogen Magnaporthe oryzae is a global threat to rice production. Here we characterized RHO2 gene (MGG_02457) that belongs to the Rho GTPase family, using a deletion mutant. This mutant ${\Delta}Morho2$ exhibited no defects in conidiation and germination but developed only 6% of appressoria in response to a hydrophobic surface when compared to the wild-type progenitor. This result indicates that MoRHO2 plays a role in appressorium development. Furthermore, exogenous cAMP treatment on the mutant led to appressoria that exhibited abnormal morphology on both hydrophobic and hydrophilic surfaces. These outcomes suggested the involvement of MoRHO2 in cAMP-mediated appressorium development. ${\Delta}Morho2$ mutation also delayed the development of appressorium-like structures (ALS) at hyphal tips on hydrophobic surface, which were also abnormally shaped. These results suggested that MoRHO2 is involved in morphological development of appressoria and ALS from conidia and hyphae, respectively. As expected, ${\Delta}Morho2$ mutant was defective in plant penetration, but was still able to cause lesions, albeit at a reduced rate on wounded plants. These results implied that MoRHO2 plays a role in M. oryzae virulence as well.

Analysis on Static Load and Resonance Frequency of Bed in High-speed Automatic Lathe for Precision Machining (정밀가공용 고속 자동선반 베드의 정하중 및 공진주파수 해석)

  • Ha, Joohwan;Lee, YunChul;Joo, KangWo;Jo, Eunjeong;Lee, Young-Sik;Lee, Jae-Kwan;Kim, Kwangsun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.32-38
    • /
    • 2017
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in high-speed automatic lathe for precision machining. An automatic lathe operating at about 25,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 0.14MPa, the maximum deformation amount was $17.9{\mu}m$, and the natural frequency was 364.72Hz. The resonance frequency was calculated as 718Hz, and the stability was confirmed by being in the range of 400Hz or more, which is the processing condition.

  • PDF

Analysis on Static Load and Resonance Frequency of Bed in Turning and Hobbing Automatic Lathe for Precision Machining (선삭 및 호빙 가공용 자동선반 베드의 정하중 및 공진주파수 해석)

  • Ha, Joo-Hwan;Lee, Yun-Chul;Jo, Eun-Jeong;Lee, Young-Sik;Lee, Jae-Kwan;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.66-70
    • /
    • 2018
  • This paper is about the analysis on the vibration characteristic of tooling units on the precision bed in turning and hobbing automatic lathe for precision machining. An automatic lathe operating at about 12,000 RPM is a critical factor in the self-weight stress and deformation of the bed. Especially, the resonance frequency should be grasped in advance to prevent abnormal vibration that may occur during processing. If the wrong bed is used, the resonant frequency can have a fatal influence on the precision machining and increase the defective rate of precision machined parts such as semiconductor parts. In this paper, vibration characteristics were evaluated through static load and resonance frequency analysis of automatic lathe bed. As a result, the maximum stress was 14.52 MPa, the maximum deformation amount was $12.15{\mu}m$, and the natural frequency was 189.43 Hz. The resonance frequency was calculated as 500 Hz, and the stability was confirmed by being in the range of 200 Hz or more, which is the processing condition.

X-ray Image Correction Model for Enhanced Foreign Body Detection in Metals (금속 내부의 이물질 검출 향상을 위한 X-ray 영상 보정 모델)

  • Kim, Won
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.10
    • /
    • pp.15-21
    • /
    • 2019
  • X-rays with shorter wavelengths than ultraviolet light have very good penetration power. It is convergence in industrial and medical fields has been used a lot. n particular, in the industrial field, various researches have been conducted on the detection of foregin body inside metal that can occur in the production process of products such as metal using x-ray, a non-destructive inspection device. Detectors are becoming increasingly popular for the popularization of DR (Digital Radiography) photography methods that digitally acquire X-ray video images. However, there are cases where foreign body detection is impossible depending on the sensor noise and sensitivity inside the detector. When producing a metal product, since the defective rate of the produced product may increase due to contamination of the foreign body, accurate detection is necessary. In this paper, we provide a correction model for X-ray images acquired in order to improve the efficiency of defect detection such as foreign body inside metal. When applied to defect detection in the production process of metal products through the proposed model, it is expected that the detection of product defects can be processed accurately and quickly.

A study of bone regeneration effect according to the two different graft bone materials in the cranial defects of rabbits

  • Song, Hyun-Jong;Kim, Hyun-Woo;Min, Gwi-Hyeon;Lee, Won-Pyo;Yu, Sang-Joun;Kim, Byung-Ock
    • Oral Biology Research
    • /
    • v.42 no.4
    • /
    • pp.198-207
    • /
    • 2018
  • Guided tissue regeneration (GBR) has been used to promote new bone formation in alveolar bone reconstruction at defective bone sites following tooth loss. Bone grafts used in GBR can be categorized into autogenous, xenogenous, and synthetic bones, and human allografts depending on the origin. The purpose of this study was to compare the rates of bone regeneration using two different bone grafts in the cranial defects of rabbits. Ten New Zealand rabbits were used in this study. Four defects were created in each surgical site. Each defect was filled as follows: with nothing, using a 50% xenograft and 50% human freeze-dried bone allograft (FDBA) depending on the volume rate, human FDBA alone, and xenograft alone. After 4 to 8 weeks of healing, histological and histomorphometric analyses were carried out. At 4 weeks, new bone formation occurred as follows: 18.3% in the control group, 6.5% in group I, 8.8% in group II, and 4.2% in group III. At 8 weeks, the new bone formation was 14.9% in the control group, 36.7% in group I, 39.2% in group II, and 16.8% in group III. The results of this study suggest that the higher the proportion of human FDBA in GBR, the greater was the amount of clinically useful new bone generated. The results confirm the need for adequate healing period to ensure successful GBR with bone grafting.

The Small GTPase CsRAC1 Is Important for Fungal Development and Pepper Anthracnose in Colletotrichum scovillei

  • Lee, Noh-Hyun;Fu, Teng;Shin, Jong-Hwan;Song, Yong-Won;Jang, Dong-Cheol;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.607-618
    • /
    • 2021
  • The pepper anthracnose fungus, Colletotrichum scovillei, causes severe losses of pepper fruit production in the tropical and temperate zones. RAC1 is a highly conserved small GTP-binding protein in the Rho GT-Pase family. This protein has been demonstrated to play a role in fungal development, and pathogenicity in several plant pathogenic fungi. However, the functional roles of RAC1 are not characterized in C. scovillei causing anthracnose on pepper fruits. Here, we generated a deletion mutant (𝜟Csrac1) via homologous recombination to investigate the functional roles of CsRAC1. The 𝜟Csrac1 showed pleiotropic defects in fungal growth and developments, including vegetative growth, conidiogenesis, conidial germination and appressorium formation, compared to wild-type. Although 𝜟Csrac1 was able to develop appressoria, it failed to differentiate appressorium pegs. However, 𝜟Csrac1 still caused anthracnose disease with significantly reduced rate on wounded pepper fruits. Further analyses revealed that 𝜟Csrac1 was defective in tolerance to oxidative stress and suppression of host-defense genes. Taken together, our results suggest that CsRAC1 plays essential roles in fungal development and pathogenicity in C. scovilleipepper fruit pathosystem.