• 제목/요약/키워드: Deep-learning Neural Network

검색결과 1,701건 처리시간 0.03초

Deep Convolution Neural Networks in Computer Vision: a Review

  • Yoo, Hyeon-Joong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권1호
    • /
    • pp.35-43
    • /
    • 2015
  • Over the past couple of years, tremendous progress has been made in applying deep learning (DL) techniques to computer vision. Especially, deep convolutional neural networks (DCNNs) have achieved state-of-the-art performance on standard recognition datasets and tasks such as ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). Among them, GoogLeNet network which is a radically redesigned DCNN based on the Hebbian principle and scale invariance set the new state of the art for classification and detection in the ILSVRC 2014. Since there exist various deep learning techniques, this review paper is focusing on techniques directly related to DCNNs, especially those needed to understand the architecture and techniques employed in GoogLeNet network.

Wine Quality Classification with Multilayer Perceptron

  • Agrawal, Garima;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제10권2호
    • /
    • pp.25-30
    • /
    • 2018
  • This paper is about wine quality classification with multilayer perceptron using the deep neural network. Wine complexity is an issue when predicting the quality. And the deep neural network is considered when using complex dataset. Wine Producers always aim high to get the highest possible quality. They are working on how to achieve the best results with minimum cost and efforts. Deep learning is the possible solution for them. It can help them to understand the pattern and predictions. Although there have been past researchers, which shows how artificial neural network or data mining can be used with different techniques, in this paper, rather not focusing on various techniques, we evaluate how a deep learning model predicts for the quality using two different activation functions. It will help wine producers to decide, how to lead their business with deep learning. Prediction performance could change tremendously with different models and techniques used. There are many factors, which, impact the quality of the wine. Therefore, it is a good idea to use best features for prediction. However, it could also be a good idea to test this dataset without separating these features. It means we use all features so that the system can consider all the feature. In the experiment, due to the limited data set and limited features provided, it was not possible for a system to choose the effective features.

Deep Convolutional Neural Network(DCNN)을 이용한 계층적 농작물의 종류와 질병 분류 기법 (A Hierarchical Deep Convolutional Neural Network for Crop Species and Diseases Classification)

  • ;나형철;류관희
    • 한국멀티미디어학회논문지
    • /
    • 제25권11호
    • /
    • pp.1653-1671
    • /
    • 2022
  • Crop diseases affect crop production, more than 30 billion USD globally. We proposed a classification study of crop species and diseases using deep learning algorithms for corn, cucumber, pepper, and strawberry. Our study has three steps of species classification, disease detection, and disease classification, which is noteworthy for using captured images without additional processes. We designed deep learning approach of deep learning convolutional neural networks based on Mask R-CNN model to classify crop species. Inception and Resnet models were presented for disease detection and classification sequentially. For classification, we trained Mask R-CNN network and achieved loss value of 0.72 for crop species classification and segmentation. For disease detection, InceptionV3 and ResNet101-V2 models were trained for nodes of crop species on 1,500 images of normal and diseased labels, resulting in the accuracies of 0.984, 0.969, 0.956, and 0.962 for corn, cucumber, pepper, and strawberry by InceptionV3 model with higher accuracy and AUC. For disease classification, InceptionV3 and ResNet 101-V2 models were trained for nodes of crop species on 1,500 images of diseased label, resulting in the accuracies of 0.995 and 0.992 for corn and cucumber by ResNet101 with higher accuracy and AUC whereas 0.940 and 0.988 for pepper and strawberry by Inception.

전이학습을 수행한 신경망을 사용한 압축센싱 심장 자기공명영상 (Compressed-Sensing Cardiac CINE MRI using Neural Network with Transfer Learning)

  • 박성재;윤종현;안창범
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1408-1414
    • /
    • 2019
  • 전이학습을 수행한 심층 인공신경망을 압축센싱 심혈관 자기공명영상에 적용하였다. 전이학습은 선행학습 신경망의 구조나 필터 커널, 가중치를 현재의 학습이나 응용에 활용하는 방법이다. 전이학습은 학습 속도를 향상시키고, 학습 데이터가 제한적일 때 신경망의 일반화에 도움이 된다. 8명의 건강한 지원자가 참여한 심장 자기공명영상 실험에서 전이학습을 수행한 신경망은 단독학습 신경망에 비해 학습시간이 5배 이상 단축되었다. 시험 데이터에 대해서도 전이학습을 수행한 신경망은 전이학습을 수행하지 않은 신경망에 비하여 낮은 정규화 평균제곱오차와 향상된 재구성 영상화질을 보였다.

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

딥 러닝 기반 이미지 압축 기법의 성능 비교 분석 (Comparison Analysis of Deep Learning-based Image Compression Approaches)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.129-133
    • /
    • 2023
  • Image compression is a fundamental technique in the field of digital image processing, which will help to decrease the storage space and to transmit the files efficiently. Recently many deep learning techniques have been proposed to promise results on image compression field. Since many image compression techniques have artifact problems, this paper has compared two deep learning approaches to verify their performance experimentally to solve the problems. One of the approaches is a deep autoencoder technique, and another is a deep convolutional neural network (CNN). For those results in the performance of peak signal-to-noise and root mean square error, this paper shows that deep autoencoder method has more advantages than deep CNN approach.

  • PDF

Accurate Human Localization for Automatic Labelling of Human from Fisheye Images

  • Than, Van Pha;Nguyen, Thanh Binh;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제20권5호
    • /
    • pp.769-781
    • /
    • 2017
  • Deep learning networks like Convolutional Neural Networks (CNNs) show successful performances in many computer vision applications such as image classification, object detection, and so on. For implementation of deep learning networks in embedded system with limited processing power and memory, deep learning network may need to be simplified. However, simplified deep learning network cannot learn every possible scene. One realistic strategy for embedded deep learning network is to construct a simplified deep learning network model optimized for the scene images of the installation place. Then, automatic training will be necessitated for commercialization. In this paper, as an intermediate step toward automatic training under fisheye camera environments, we study more precise human localization in fisheye images, and propose an accurate human localization method, Automatic Ground-Truth Labelling Method (AGTLM). AGTLM first localizes candidate human object bounding boxes by utilizing GoogLeNet-LSTM approach, and after reassurance process by GoogLeNet-based CNN network, finally refines them more correctly and precisely(tightly) by applying saliency object detection technique. The performance improvement of the proposed human localization method, AGTLM with respect to accuracy and tightness is shown through several experiments.

A Model of Strawberry Pest Recognition using Artificial Intelligence Learning

  • Guangzhi Zhao
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권2호
    • /
    • pp.133-143
    • /
    • 2023
  • In this study, we propose a big data set of strawberry pests collected directly for diagnosis model learning and an automatic pest diagnosis model architecture based on deep learning. First, a big data set related to strawberry pests, which did not exist anywhere before, was directly collected from the web. A total of more than 12,000 image data was directly collected and classified, and this data was used to train a deep learning model. Second, the deep-learning-based automatic pest diagnosis module is a module that classifies what kind of pest or disease corresponds to when a user inputs a desired picture. In particular, we propose a model architecture that can optimally classify pests based on a convolutional neural network among deep learning models. Through this, farmers can easily identify diseases and pests without professional knowledge, and can respond quickly accordingly.

인공신경망의 연결압축에 대한 연구 (A Study on Compression of Connections in Deep Artificial Neural Networks)

  • 안희준
    • 한국산업정보학회논문지
    • /
    • 제22권5호
    • /
    • pp.17-24
    • /
    • 2017
  • 최근 딥러닝, 즉 거대 또는 깊은 인공신경망을 사용한 기술이 놀라운 성능을 보이고 있고, 점차로 그 네트워크의 규모가 커지고 있다. 하지만, 신경망 크기의 증가는 계산양의 증가로 이어져서 회로의 복잡성, 가격, 발열, 실시간성 제약 등의 문제를 야기한다. 또한, 신경망 연결에는 많은 중복성이 존재한다, 본 연구에서는 이 중복성을 효과적으로 제거하여 이용하여 원 신경망의 성능과 원하는 범위안의 차이를 보이면서, 네트워크 연결의 수를 줄이는 방법을 제안하고 실험하였다. 특히, 재학습에 의하여 성능을 향상시키고, 각 계층별 차이를 고려하기 위하여 계층별 오류율을 할당하여 원하는 성능을 보장할 수 있는 간단한 방법을 제안하였다. 대표적인 영상인식 신경망구조인 FCN (전연결) 구조와 CNN (컨벌루션 신경망) 구조에서 대하여 실험한 결과 약 1/10 정도의 연결만으로도 원 신경망과 유사한 성능을 보일 수 있음을 확인하였다.

Deep learning classifier for the number of layers in the subsurface structure

  • Kim, Ho-Chan;Kang, Min-Jae
    • International journal of advanced smart convergence
    • /
    • 제10권3호
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, we propose a deep learning classifier for estimating the number of layers in the Earth's structure. When installing a grounding system, knowledge of the subsurface in the area is absolutely necessary. The subsurface structure can be modeled by the earth parameters. Knowing the exact number of layers can significantly reduce the amount of computation to estimate these parameters. The classifier consists of a feedforward neural network. Apparent resistivity curves were used to train the deep learning classifier. The apparent resistivity at 20 equally spaced log points in each curve are used as the features for the input of the deep learning classifier. Apparent resistivity curve data sets are collected either by theoretical calculations or by Wenner's measurement method. Deep learning classifiers are coded by Keras, an open source neural network library written in Python. This model has been shown to converge with close to 100% accuracy.