
International Journal of Internet, Broadcasting and Communication Vol.15 No.2 133-143 (2023)  

http://dx.doi.org/10.7236/IJIBC.2023.15.2.133 

 

Copyright©  2023 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of 

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) 

 
 

A Model of Strawberry Pest Recognition using Artificial Intelligence Learning   

 

 

Guangzhi Zhao 

 

Ph.D. Candidate, Dept. of Computer Science and Engineering, Jeonbuk National University 

frankzgz1234@gmail.com 

 

Abstract  

In this study, we propose a big data set of strawberry pests collected directly for diagnosis model learning and 

an automatic pest diagnosis model architecture based on deep learning. First, a big data set related to strawberry 

pests, which did not exist anywhere before, was directly collected from the web. A total of more than 12,000 

image data was directly collected and classified, and this data was used to train a deep learning model. Second, 

the deep-learning-based automatic pest diagnosis module is a module that classifies what kind of pest or disease 

corresponds to when a user inputs a desired picture. In particular, we propose a model architecture that can 

optimally classify pests based on a convolutional neural network among deep learning models. Through this, 

farmers can easily identify diseases and pests without professional knowledge, and can respond quickly 

accordingly. 
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1. Introduction 

Nowadays, artificial intelligence, especially the popularity of deep learning algorithms, is remarkable. The 

reason why deep learning algorithms are popular is that they learn how to perform various tasks based on data 

and demonstrate performance far superior to humans when given a large amount of data. Among them, 

Convolutional Neural Network (CNN) was developed by imitating the human visual system and shows very 

high performance in image processing. However, to achieve high-level performance with a deep learning 

model, it is necessary to have very good quality data, and it is necessary to design the best deep learning model 

architecture that can learn the corresponding data well. Table 1 shows List of collected disease and pest data. 

 

 

 

 

IJIBC 23-2-15 

Manuscript Received: March. 16, 2023 / Revised: March. 18, 2023 / Accepted: March. 23, 2023 

Corresponding Author: frankzgz1234@gmail.com  

Tel:    

Ph.D. Candidate, Dept. of Computer Science and Engineering, Jeonbuk National University, Korea 
***-****-****

mailto:frankzgz1234@gmail.com


134                       International Journal of Internet, Broadcasting and Communication Vol.15 No.3 133-143 (2023) 
 

Table 1. List of collected disease and pest data 

Diseases Pests 

Anthracnose two-spotted spider mite 

leaf scorch greenhouse whitefly 

Leaf Blight Cotton leafworm 

Powdery mildew garen thrips, flower thrips 

Gray Mold 

Disease 
Spiky Slug 

leaf spot 
Potato aphid, Tomato 

aphid 

In section 2, we will discuss the learning techniques using deep learning models. In section 3, we will present 

the experimental details. Finally, in section 4, we will conclude our study. 

 

2. Diagnosis Model using Deep Learning 

After collecting all the data, we designed a deep learning architecture that can classify the disease and pest 

data most effectively. The baseline network is based on DenseNet, which was presented at CVPR 2017 [1]. 

DenseNet is one of the CNN architectures and has shown very high performance [2]. The DenseNet 

architecture is shown in Figure 1. 

 

Figure 1. DenseNet architecture 

DenseNet is a type of Deep Residual Network that concatenates all output feature maps from the input layer 

to the output layer and reuses the feature maps, resulting in high performance. Like an ensemble of several 

shallow networks, Deep Residual Networks that reuse previous output layer feature maps work well even when 

certain layers' kernels are degraded and collapsed, because they have a very long path for gradients to flow 

through. This makes them work very well even when designing deep networks [3]. 

 

DenseNet improved upon ResNet, which was introduced in 2015 and is the predecessor of Deep Residual 

Networks [4]. ResNet allows for continuous reuse of feature maps by performing elementwise addition 

between the previous layer's feature maps and the next layer's feature maps. The operation performed at each 

layer can be expressed as the following equation (1), and after passing through multiple output layers, the final 

result is obtained as shown in equation (2). (Here, h represents the output of the previous layer, w is the weight 

being multiplied, and f represents the activation function.) 



A Model of Strawberry Pest Recognition using Artificial Intelligence Learning                                      135 

 

ℎ𝑡+1 = 𝑓(ℎ𝑡 ∗ 𝑤𝑡+1) + ℎ𝑡 (1) 

ℎ𝑡+1 = ∑ 𝑓𝑖(ℎ𝑖 ∗ 𝑤𝑖+1) + ℎ𝑡

𝑡−1

𝑖=0

(2) 

However, there are drawbacks to this Addition method. First, as the feature maps are added through multiple 

layers, the previous layer's information becomes less clear and fades away. Second, addition can only be 

performed when the number of channels is the same. To address these issues, DenseNet uses Concatenation 

instead of Addition. With Concatenation, the information from all layers is stacked Channelwise, so the 

information is preserved even as it passes through the layers, and output feature maps can be stacked even 

when the number of channels is different. At each layer, an operation such as (3) is performed, and after passing 

through multiple output layers, a final result such as (4) is obtained. (h denotes the output of the previous layer, 

w denotes the weights multiplied, f denotes the activation function, and Z denotes the Concatenation function.) 

ℎ𝑡+1 = 𝑍(𝑓(ℎ𝑡 ∗ 𝑤𝑡+1), ℎ𝑡) (3) 

ℎ𝑡+1 = 𝑍(𝑍𝑖(𝑓𝑖(ℎ𝑡 ∗ 𝑤𝑡+1)), ℎ𝑡) (4) 

Furthermore, DenseNet not only reuses the feature maps from the immediately preceding layer, but also 

utilizes feature maps from all previous layers, providing more paths for gradients to flow through. This leads 

to higher accuracy, but it requires significant computing resources due to frequent concatenation. To address 

this issue, this patent proposes a Weakly DenseNet model architecture that reduces unnecessary connections 

in DenseNet. Residual Connection in Various Models are shown in Figure 2. 

 

Figure 2. Residual Connection in Various Models 

 

Figure 3. Distribution of feature maps in CNN 

As shown in Figure 3, the initial layers of a CNN capture general features such as lines, edges, and 

surfaces, while middle layers capture more specific features such as eyes, noses, and mouths, and the final 

output layer captures the most specific features such as the entire human face. This reveals a problem with 

DenseNet: the feature maps formed in the very early layers of the model provide little help in classifying who 

the person is, as they capture very general features like lines and edges [5]. However, DenseNet continues to 

pass all these feature maps to the later layers, consuming a large amount of computing resources in the process. 



136                       International Journal of Internet, Broadcasting and Communication Vol.15 No.3 133-143 (2023) 
 

Therefore, Weakly DenseNet only propagates the very general feature maps from the initial layers to the 

next layer, similar to ResNet's Skip Connection, without passing them to the classification layer (last layer). 

By minimizing the inefficient Dense Connection of DenseNet and maximizing the benefits of concatenation, 

and keeping the channel number from increasing excessively, it is possible to achieve high performance with 

minimal computing resources. Weakly DenseNet Model Architecture is shown in Figure 4. 

 

Figure 4. Weakly DenseNet Model Architecture 

Figure 5 shows Weakly DenseNet consists of a Stem Layer, Intermediate Blocks, and a Classification Layer. 

 

Figure 5. Weakly DenseNet Stem Layer  

The Stem Layer is the first block in the network that compresses the input image. It performs a 7x7 

convolution operation with a stride of 2, followed by normalization and activation functions, and then a 3x3 

max pooling operation with a stride of 2. This reduces the size of the 224x224 image to 56x56. Since it is 

difficult to perform operations on large-sized images directly, the Stem Layer helps to reduce the image size. 

Weakly DenseNet Intermediate Building Block (Normal) shows in Figure 6. 

 
Figure 6. Weakly DenseNet Intermediate Building Block (Normal)  
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Weakly DenseNet has two intermediate building blocks, where 3x3 convolution and two 1x1 convolution 

operations are performed. The two 1x1 convolution operations are equivalent to an attention mechanism that 

strengthens important information. This operates similarly to the Residual Attention Network introduced in 

2017, but with lower computing resources while still demonstrating good performance [6].  Attention 

Mechanism of Residual Attention Network shows in Figure 7. 

 
Figure 7. Attention Mechanism of Residual Attention Network 

 

3. Experiments 

The two 1x1 Convolution operations included in Weakly DenseNet are as follows where z represents the 

feature map before the activation function, r represents the feature map after the activation function, K 

represents the kernel, and x represents the input. The normalization process is omitted for simplicity [7]. 

 

𝑧(1) = Σ𝑖=0
ℎ Σ𝑗=0

𝑤 𝐾𝑖𝑗
(1)

∗ 𝑥𝑖:𝑖+𝑠,𝑗:𝑗+𝑠 (5) 

𝑟(1) = max(0, 𝑧(1)) (6) 

𝑧(2) = Σ𝑖=0
ℎ Σ𝑗=0

𝑤 𝐾𝑖𝑗
(2)

∗ 𝑟𝑖:𝑖+𝑠,𝑗:𝑗+𝑠
(1) (7) 

𝑟(2) = max(0, 𝑧(2)) (8) 

 

A 1x1 convolution operation multiplies the input feature map by a convolution kernel of size 1. This 

convolution kernel is learned through the backpropagation process and can highlight important features, while 

masking unimportant ones (negative pixels) through the ReLU activation function, preventing their values 

from being inverted. 

𝜕𝐿𝑜𝑠𝑠

𝜕𝐾(2)
= Σ𝑖=0

ℎ Σ𝑗=0
𝑤 𝜕𝐿𝑜𝑠𝑠

𝜕𝑟(2)
∗

𝜕𝑟(2)

𝜕𝑧(2)
∗

𝜕𝑧(2)

𝜕𝐾(2)
 (9) 

𝜕𝐿𝑜𝑠𝑠

𝜕𝐾(1)
= Σ𝑖=0

ℎ Σ𝑗=0
𝑤 𝜕𝐿𝑜𝑠𝑠

𝜕𝑟(2)
∗

𝜕𝑟(2)

𝜕𝑧(2)
∗

𝜕𝑧(2)

𝜕𝑟(1)
∗

𝜕𝑟(1)

𝜕𝑧(1)
∗

𝜕𝑧(1)

𝜕𝐾(1)
 (10) 

𝐾(2) ∶= 𝐾(2) − 𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝐾(2)
(11) 

𝐾(1) ∶= 𝐾(1) − 𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝐾(1)
(12) 

The gradients used in training are computed as follows. K (2) refers to the second 1x1 Convolution kernel 

and K (1) refers to the first 1x1 Convolution kernel. The gradients of the two vectors K (1)(2) are proportional 

to the input they will be multiplied with, so the values are linearly adjusted as the input values increase. 

𝜕𝐿𝑜𝑠𝑠

𝜕𝐾(2)
= Σ𝑖=0

ℎ Σ𝑗=0
𝑤 𝜕𝐿𝑜𝑠𝑠

𝜕𝑂𝑢𝑡
∗ 1 ∗ 𝑟(1) (13) 
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𝜕𝐿𝑜𝑠𝑠

𝜕𝐾(1)
= Σ𝑖=0

ℎ Σ𝑗=0
𝑤 𝜕𝐿𝑜𝑠𝑠

𝜕𝑂𝑢𝑡
∗ 1 ∗ 𝐾(2) ∗ 1 ∗ 𝑥 (14) 

(K (2) is Must bigger than 0 by ReLU Activation) 

To put it more intuitively, if the pixel value of an important part of an image with a pest is 8.2, and the pixel 

value of an unimportant part without a pest is 0.2, performing a 1x1 convolution will linearly adjust the values. 

If K is 4, the pixel values of the pest areas will be adjusted to 32.8, and the pixel values of the non-pest areas 

will be adjusted to 0.8, which is a more distinct difference than the previous difference of 8 between the two 

positions. As a result, important and unimportant parts can be better separated, and even a tiny difference, such 

as 1.2 between the legs and the body, can be more accurately distinguished after multiplying by K=4. Figure 

8 shows 1x1 Convolution structure. 

 
Figure 8. 1x1 Convolution 

 

If K were negative, all pixel values would become negative, with important areas experiencing a sharp drop 

in pixel values and unimportant areas experiencing a slight decrease. (If K were -3, 10 would become -30 and 

0.1 would become -0.3.) Such a feature map inverts information, making classification more difficult. 

Therefore, this feature map becomes a residual channel with all pixels being 0 after passing through the ReLU 

activation function. 

 
Figure 9. Attention Mechanism of Weakly DenseNet 

Figure 9 shows the image output from the actual model. It can be seen that the Attention Mechanism is 

functioning properly. The first image is the input image, and the second image is the image after passing 

through a 3x3 Convolution operation. When a 1x1 Convolution is applied twice, the pixel values of the pest in 

the center are further enhanced, while the pixel values of the surrounding leaves and branches become very 

faint. What the model wants is the appearance of the pest, not the appearance of the leaves. Through this 

Attention process, the model can better classify the pest. Subsequently, the Concatenation operation is 

performed with the original input. By performing Concatenation, Degradation (a phenomenon in which all 

gradients become zero and can no longer flow backward during Backward Propagation. In the case of ReLU, 

only nodes that were positive in the previous layer are multiplied by 1, and nodes that were negative are 
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multiplied by 0, but if all nodes are 0, all gradients that flow in become 0, and the gradient can no longer flow) 

can be prevented to some extent. Many paths are created for the gradient to flow, so even if a certain K is 

wrongly learned and converges to a negative value, the gradient can still flow without problems toward the 

previous layer. 

ℎ𝑡+1 = 𝑍(𝑓(ℎ𝑡 ∗ 𝑤𝑡+1), ℎ𝑡) (15) 

 

 

As shown in the figure 10, the left network without connections cannot function properly if the f2 layer 

degrades, but when connections are added as in the right figure, many paths for gradient flow are created. By 

connecting each layer with connections, the network operates as if it were 8 shallow networks as shown in the 

figure, making it possible to create a model that is very robust to the degradation problem. 

 
Figure 10. Concatenation Connection 

Then, the image size is reduced by the Reduction Block. Weakly DenseNet Intermediate Building Block 

(Reduction) shows in Figure 11. The Reduction Block is generally similar to the Normal Block mentioned 

above, but performs MaxPooling operation on the image to reduce the image size by half. Weakly DenseNet 

Classification Layer shows in Figure 12. 

 
Figure 11. Weakly DenseNet Intermediate Building Block (Reduction)   
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Figure 12. Weakly DenseNet Classification Layer  

 

Table 2. Overall model organization 

Block Output Size 

Initial Block (a) 56 x 56 x 32 

Intermediate Block (b) 56 X 56 X 96 

Intermediate Block (c) 28 X 28 X 192 

Intermediate Block (b) 28 x 28 x 384 

Intermediate Block (c) 

1 x 1 conv, stride 1 

1 X 1 conv, stride 1 

2 x 2 max pool, stride 2 

Classification Block (d) 

14 X 14 x 768 

14 X 14 x 512 

14 X 14 x 512 

7 x 7 x 512 

1 X 1 X 24 

 

The table 2 illustrates the overall architecture of the model, which takes an input image of size 224 x 224 x 

3 (RGB channel) and transforms it into a tensor of size 7 x 7 x 512 before going through the Classification 

Layer for classification. With a total of 16 layers, this deep learning model architecture demonstrates 

exceptional performance compared to other existing models. 

To create a more accurate model, various optimization techniques were applied during training. Data 

augmentation techniques were used to increase the amount of data by rotating, shifting horizontally and 

vertically, shearing, zooming, and horizontally flipping the available images. Figure 13 shows Augmentation 

techniques for model training. 

 
Figure 13. Augmentation techniques for model training 
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To enable the model to reach the global minimum instead of a local minimum, a learning rate scheduling 

algorithm was designed. The learning rate is reduced by a factor of θ (decay rate) every P (patience) epochs. 

P and θ are hyperparameters, and for this model, P was set to 5 and θ was set to 0.8. Additionally, to reach 

the global minimum, Nesterov Momentum was set to 0.9, and the initial learning rate was set to 0.01[8]. 

 

4. Result 

The table below Table 3 and table 4 shows the experimental results. A total of 8 models and control 

experiments were conducted. All models used the same dataset, data augmentation techniques, and learning 

rate scheduling. 

Table 3. result (compare) 

Model Name Training Accuracy 
Validation 

Accuracy 

Model Size 

(MB) 

Training Time 

(ms)/Batch Size 

MobileNet-v1 99.23 85.45 25 152 

MobileNet-v2 99.28 87.97 33.9 198 

ShuffleNet-v1 99.13 83.58 28.8 145 

ShuffleNet-v2 98.72 83.58 42 144 

VGG-16 99.82 93 120.2 303 

SENet-16 99.10 88.71 19.5 138 

NIN-16 99.63 91.84 19.6 137 

WeaklyDenseNet-16 99.83 93.42 30.5 138 

'NIN' represents Network in Network. 

 

Weakly DenseNet is a lightweight version of DenseNet that reduces the unnecessary densely connected la

yers, greatly decreasing the number of operations (FLOPs) required for the model. In each layer, it mainly pe

rforms 1x1 convolution operations rather than 3x3 convolutions, resulting in a very small number of paramet

ers. Therefore, it has a similar model size to other lightweight models such as MobileNet and ShuffleNet [9,10]. 
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Table 4. result (Bar graph) 

 
When tested on the test data (unseen data), Weakly DenseNet showed better performance (92.93% < 93.42%) 

than VGG-16 , which has a huge amount of parameters close to 120MB, and outperformed SENet, which is a 

similar attention-based network [11,12]. In other words, Weakly DenseNet has a lightweight model size, but 

shows much better performance than other giant networks. Network In Network, which is a network that 

performs 1x1 convolution after 3x3 convolution similarly to Weakly DenseNet, also showed good performance 

with a small size [13]. Therefore, it can be seen that performing 1x1 convolution after 3x3 convolution is more 

effective in accurate classification of plant diseases and insect pests, and adding connections by performing 

concatenation operation can further improve the performance (91.84% < 93.33%) [14]. 

 

5. Conclusion 

In conclusion, this study proposes a big data set of strawberry pests and an automatic pest diagnosis model 

architecture based on deep learning. By directly collecting and classifying over 12,000 image data related to 

strawberry pests, we were able to train a deep learning model and develop an automatic pest diagnosis module. 

This module enables farmers to easily identify diseases and pests without professional knowledge and respond 

quickly accordingly. The effectiveness of the proposed model architecture, which optimally classifies pests 

based on a convolutional neural network, was demonstrated through experiments. Overall, this study highlights 

the potential of deep learning algorithms in agriculture and provides a practical solution for pest diagnosis in 

strawberry farming. Further research can be conducted to expand the application of deep learning algorithms 

in various agricultural domains. 
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