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Abstract 

In this paper, we propose a deep learning classifier for estimating the number of layers in the Earth's 

structure. When installing a grounding system, knowledge of the subsurface in the area is absolutely necessary. 

The subsurface structure can be modeled by the earth parameters. Knowing the exact number of layers can 

significantly reduce the amount of computation to estimate these parameters. The classifier consists of a 

feedforward neural network. Apparent resistivity curves were used to train the deep learning classifier. The 

apparent resistivity at 20 equally spaced log points in each curve are used as the features for the input of the 

deep learning classifier. Apparent resistivity curve data sets are collected either by theoretical calculations or 

by Wenner's measurement method. Deep learning classifiers are coded by Keras, an open source neural 

network library written in Python. This model has been shown to converge with close to 100% accuracy. 
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1. Introduction 
 

The grounding construction site analysis mainly calculates the grounding resistance by simplifying the 

underground structure into a horizontal multi-layer structure. Horizontal multi-layer structures can be modeled 

by earth parameters such as the number of layers, the depth and resistance of each layer. Apparent earth 

resistivity data is needed to estimate the depth and resistance of each layer. Apparent earth resistivity can be 

measured and theoretically calculated. The most widely used method of measuring apparent earth resistivity 

is Wenner's four-electrode method.  

Estimation of the earth parameters is accomplished by repeatedly modifying the earth parameters so that the 

theoretical calculated apparent resistivity is close to the measured value [2,3]. This results in an optimization 

problem that minimizes the squared value of the difference between the calculated and measured values as a 

function of cost. Various optimization problem solving methods are used to solve this problem, but the all the 

methods are similarly computationally expensive and actually takes a lot of time and effort. Because, in each 

iterative procedure, the earth apparent resistivity and their partial derivatives with respect to the earth 

parameters should be calculated. However, in each expression of both the earth apparent resistivity and their 

partial derivatives with respect to the earth parameters, there exists an improper integral that has not only an 
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infinite limit of integration but also a Bessel’s function. To reduce the computation time, paper [2]–[6] 

appealed to numerical integration or infinite series expression. They are still inconvenient and arduous if 

accuracy should also be ensured. 

So knowing the exact number of layers can significantly reduce the amount of computation [8]. In most 

earth parameter inversion methods, the number of layers is an arbitrary user-defined parameter, or it is 

determined through trial and-error by running the inversion many times using different numbers of layers and 

choosing the number of layers that produces the best model-data fit. Here, we provide a method that solves the 

problem of choosing the correct number of layers.  

In this paper, we propose a deep learning classifier to determine the number of layers. The data set for 

training the deep learning classifier consists of 150 pieces of the apparent resistivity curves. The apparent 

resistivity at 20 points in each curve are used as the features for the input of the deep learning classifier. The 

validation split randomly split the data into use for training and validating. The 20% of the dataset we provide 

in the model is set aside for validating model performance. In the simulation, the deep learning model for the 

earth layer classifier is coded by Keras which is a user-friendly neural network library written in Python.  

2. Wenner’s Test and Apparent Soil Resistivity  

Wenner configuration method is most widely used to measure the apparent resistivity as shown in Fig. 1. 

Wenner's method was published by Frank Wenner in 1915. In this method, to simplify the problem, it is 

assumed that the ground is composed of N layers horizontally, and each layer has the same resistivity [2]. Fig. 

1 shows the electrode arrangement of Wenner's four-electrode method. In Wenner's method, the four electrodes 

are placed with the same distance 𝑎, and the voltage applied to the two internal electrodes(A, B) is measured 

when the current is supplied through two external electrodes(C, D). Assuming the depth of last layer is infinite, 

ℎ𝑖(i = 1, 2, ..., N-1) and 𝜌𝑖 (i = 1, 2, ..., N) represent the resistivity and the depth of each soil layer. The data 

measured with the more wide span 𝑎 are used for analyzing the more deep earth structure. The measured 

apparent earth resistivity can be obtained as follows [2].  

 𝜌𝑎 = 2𝜋𝑎
∆𝑉

𝐼
= 2𝜋𝑎𝑅                                                                         () 

 

Figure 1. Wenner configuration for measuring apparent soil resistivity of N-layer earth structure. 
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By the inverse definition, if the earth parameters are known, the apparent resistivity can be by [2], 

𝜌𝑎 = 𝜌1[1 + 2𝑎 ∫ 𝑓(𝜆)[𝐽0(𝜆𝑎) − 𝐽0(2𝜆𝑎)]𝑑𝜆
∞

0
]                                                                      () 

where 1 is the soil resistivity of the first layer, 𝑎 is electrode span, )(0 rJ   is the zero order Bessel’s function of 

the first kind, and  

     𝑓(𝜆) =  𝛼1 − 1                                                                                         () 

𝛼1 = 1 +
2𝐾1𝑒−2𝜆ℎ1

1 − 𝐾1𝑒−2𝜆ℎ1
                  𝑘1 =

𝜌2𝛼2 −𝜌1

𝜌2𝛼2  + 𝜌1

 

𝛼2 = 1 +
2𝐾2𝑒−2𝜆ℎ2

1 − 𝐾2𝑒−2𝜆ℎ2
 ,                 𝑘2 =

𝜌3𝛼3 −𝜌2

𝜌3𝛼3  + 𝜌2

 

⋮ 

𝛼𝑁−1 = 1 +
2𝐾𝑁−1𝑒−2𝜆ℎ𝑁−1

1 − 2𝐾𝑁−1𝑒−2𝜆ℎ𝑁−1
 ,          𝑘𝑁−1 =

𝜌𝑁 + 𝜌𝑁−1

𝜌𝑁 + 𝜌𝑁−1

 

 

)(f  is the kernel function. In the earth structure composed of N layers, the parameters are the depth of each layer, 

where ℎ𝑖(i = 1, 2, ..., N-1) and resistivity 𝜌𝑖 (i = 1, 2, ..., N) are the thickness and the resistivity of the ith layer 

respectively and N is the number of layers. 

 

3. Deep learning Classifier for the number of layers 

3. 1 Deep learning model for classifier   

The architecture of the deep learning classifier is shown in Fig. 2. The classifier consists of three layers of 

the feedforward neural network (FNN): input, hidden, and output layer. The input layer has 20 nodes and the 

hidden layer has 128 nodes. The number of nodes in the input layer is determined by the number of features, 

but the number of nodes in the hidden layer can be hundreds or thousands. Increasing the number of nodes in 

the hidden layer increases the model capacity [7]. The features are selected from 20 points in the apparent 

resistivity curve. The last layer of our model has 3 nodes. One option is indicated for each number of layer: 2 

layer, 3 layer or 4 layer. The activation function for the hidden layer is ReLU or Rectified Linear Activation. 

Although it is two linear pieces, it has been proven to work well in neural networks. The activation for the last 

layer is ‘softmax’. Softmax makes the output sum up to 1 so the output can be interpreted as probabilities. The 

model will then make its prediction based on which option has a higher probability [8]. The dropout is used 

between the hidden and last layers to get the assemble effect.  
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Figure 2. The architecture for deep learning classifier. 

3. 2 Dataset 

The data set consists of 150 apparent resistance curves. Three layers 2, 3 and 4 were selected to generate 

this data set. Because these 3 layers are actually the most applied. Each layer has 50 pieces of data. The data 

looks very simple in Table 1. Number of layers from left to right, depth and resistance of layers, and 20 points 

of apparent resistivity. The apparent resistivity is of field measurements and theoretically generated ones. To 

train a deep learning classifier, we use the number of layers as labels and 20 points on the apparent resistance 

curve as features. 

For feature selection, the 20 points in the apparent resistivity curve (a1, a2, …, a20) are used as features as 

shown in Table 1. The 20 points are equally spaced logarithmic scales, as shown in Figure 3. The number of 

layers, the depth of the layers, and the resistivity are parameters of the subsurface structure. Knowing the 

number of layers is important before estimating other parameters. This is because knowing the number of 

layers makes it much easier to estimate other parameters. This is because the number of layers determines the 

number of parameters. As shown in Fig. 1, the resistivity number(𝜌𝑖 (i = 1, 2, ..., N)) in N-layer structure is 

equal to the number of layers and the number of thickness (ℎ𝑖(i = 1, 2, ..., N-1)) is one less than the number of 

layers.   

Normalization of data sets is a common requirement for many deep learning estimators to avoid features in 

greater numeric ranges dominating those in smaller numeric ranges meanwhile reducing the calculation 

expense. Each data feature is normalized by dividing by the maximum of data before input to the deep learning 

classifier [9]. 

Table 1. Dataset for earth structure and apparent resistivity. 
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(a)  2-layer earth structure.                      (b) 4-layer earth structure. 

Figure 3. Apparent resistivity for the different number of layer earth structure. 

4. Simulation and Results 

The deep learning model for the earth layer classifier has been coded by Keras as shown in Fig. 4. Keras is 

a user-friendly neural network library written in Python. ‘Dense’ is the layer type. Dense is a standard layer 

type that works for most cases. In a dense layer, all nodes in the previous layer connect to the nodes in the 

current layer [10].  

As mentioned above, we have 20 nodes in the input layer, 128 nodes in the hidden layer, and 3 nodes in the 

last layer. The activation function of the hidden layer and last layer are ReLU and softmax respectively. The 

dropout is used with the 0.5 rate. Next, we need to compile our model. Compiling the model takes two 

parameters: optimizer and loss. The optimizer controls the learning rate. We use ‘adam’ as our optmizer. Adam 

is generally a good optimizer to use for many cases. The adam optimizer adjusts the learning rate throughout 

training. We use ‘categorical_crossentropy’ for our loss function. This is the most common choice for 

classification [10]. A lower score indicates that the model is performing better. The number of epochs is the 

number of times the model will cycle through the data. The more epochs we run, the more the model will 

improve, up to a certain point. After that point, the model will stop improving during each epoch. In addition, 

the more epochs, the longer the model will take to run. To monitor this, we use ‘early stopping’. Early stopping 

will stop the model from training before the number of epochs is reached if the model stops improving. We 

will set our early stopping monitor to 10. This means that after 10 epochs in a row in which the model doesn’t 

improve, training will stop 
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(a) Model configuration by Keras. 

 

(b) Iteration steps of the loss and accuracy function of traing and validation dataset. 

Figure 4. The deep Learning Model for the earth layer classifier. 

To make things even easier to interpret, we use the ‘accuracy’ metric to see the accuracy score on the 

validation set at the end of each epoch. As shown in Fig. 4b, the first two (loss and accuracy of each epoch) 

are for the training dataset and the next two (val_loss, val_accuracy) are for the validation dataset. The loss of 

both the training and validation sets decreases, and the accuracy of the training and validation sets increases 

as epochs progress. Fig. 5 shows the loss history and accuracy history for the training and validation sets. The 

blue line in Fig. 5 is the training set and the red line is the validation set. As shown in Fig. 5, the deep learning 

model of Earth Layer Classifier shows that it converges to 100% accuracy. 
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(a) Loss function.                            (b) Accuracy function 

Figure 5. The loss and accuracy function of traing (blue line) and validation (red line) dataset. 

5. Conclusion 

We propose a deep learning classifier for estimating the number of layers in underground structures. The 

classifier consists of three layers of a feedforward neural network. Apparent resistance curves were used to 

train a deep learning classifier. Features are selected from 20 equally spaced log points on the apparent 

resistance curve. Apparent resistivity curve data sets are collected either by theoretical calculations or by 

Wenner's measurement method. Subterranean structures can be modeled using earth parameters such as 

number of layers, depth, and resistance of each layer. Knowing the exact number of layers can significantly 

reduce the amount of computation to estimate Earth parameters. The proposed method has been shown to 

converge with 100% accuracy in the layer count classification. 
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