• Title/Summary/Keyword: Deep learning model

검색결과 2,764건 처리시간 0.039초

심층 강화학습을 이용한 디지털트윈 및 시각적 객체 추적 (Digital Twin and Visual Object Tracking using Deep Reinforcement Learning)

  • 박진혁;;최필주;이석환;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.145-156
    • /
    • 2022
  • Nowadays, the complexity of object tracking models among hardware applications has become a more in-demand duty to complete in various indeterminable environment tracking situations with multifunctional algorithm skills. In this paper, we propose a virtual city environment using AirSim (Aerial Informatics and Robotics Simulation - AirSim, CityEnvironment) and use the DQN (Deep Q-Learning) model of deep reinforcement learning model in the virtual environment. The proposed object tracking DQN network observes the environment using a deep reinforcement learning model that receives continuous images taken by a virtual environment simulation system as input to control the operation of a virtual drone. The deep reinforcement learning model is pre-trained using various existing continuous image sets. Since the existing various continuous image sets are image data of real environments and objects, it is implemented in 3D to track virtual environments and moving objects in them.

Improving Deep Learning Models Considering the Time Lags between Explanatory and Response Variables

  • Chaehyeon Kim;Ki Yong Lee
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.345-359
    • /
    • 2024
  • A regression model represents the relationship between explanatory and response variables. In real life, explanatory variables often affect a response variable with a certain time lag, rather than immediately. For example, the marriage rate affects the birth rate with a time lag of 1 to 2 years. Although deep learning models have been successfully used to model various relationships, most of them do not consider the time lags between explanatory and response variables. Therefore, in this paper, we propose an extension of deep learning models, which automatically finds the time lags between explanatory and response variables. The proposed method finds out which of the past values of the explanatory variables minimize the error of the model, and uses the found values to determine the time lag between each explanatory variable and response variables. After determining the time lags between explanatory and response variables, the proposed method trains the deep learning model again by reflecting these time lags. Through various experiments applying the proposed method to a few deep learning models, we confirm that the proposed method can find a more accurate model whose error is reduced by more than 60% compared to the original model.

Automated ground penetrating radar B-scan detection enhanced by data augmentation techniques

  • Donghwi Kim;Jihoon Kim;Heejung Youn
    • Geomechanics and Engineering
    • /
    • 제38권1호
    • /
    • pp.29-44
    • /
    • 2024
  • This research investigates the effectiveness of data augmentation techniques in the automated analysis of B-scan images from ground-penetrating radar (GPR) using deep learning. In spite of the growing interest in automating GPR data analysis and advancements in deep learning for image classification and object detection, many deep learning-based GPR data analysis studies have been limited by the availability of large, diverse GPR datasets. Data augmentation techniques are widely used in deep learning to improve model performance. In this study, we applied four data augmentation techniques (geometric transformation, color-space transformation, noise injection, and applying kernel filter) to the GPR datasets obtained from a testbed. A deep learning model for GPR data analysis was developed using three models (Faster R-CNN ResNet, SSD ResNet, and EfficientDet) based on transfer learning. It was found that data augmentation significantly enhances model performance across all cases, with the mAP and AR for the Faster R-CNN ResNet model increasing by approximately 4%, achieving a maximum mAP (Intersection over Union = 0.5:1.0) of 87.5% and maximum AR of 90.5%. These results highlight the importance of data augmentation in improving the robustness and accuracy of deep learning models for GPR B-scan analysis. The enhanced detection capabilities achieved through these techniques contribute to more reliable subsurface investigations in geotechnical engineering.

Privacy-Preserving Deep Learning using Collaborative Learning of Neural Network Model

  • Hye-Kyeong Ko
    • International journal of advanced smart convergence
    • /
    • 제12권2호
    • /
    • pp.56-66
    • /
    • 2023
  • The goal of deep learning is to extract complex features from multidimensional data use the features to create models that connect input and output. Deep learning is a process of learning nonlinear features and functions from complex data, and the user data that is employed to train deep learning models has become the focus of privacy concerns. Companies that collect user's sensitive personal information, such as users' images and voices, own this data for indefinite period of times. Users cannot delete their personal information, and they cannot limit the purposes for which the data is used. The study has designed a deep learning method that employs privacy protection technology that uses distributed collaborative learning so that multiple participants can use neural network models collaboratively without sharing the input datasets. To prevent direct leaks of personal information, participants are not shown the training datasets during the model training process, unlike traditional deep learning so that the personal information in the data can be protected. The study used a method that can selectively share subsets via an optimization algorithm that is based on modified distributed stochastic gradient descent, and the result showed that it was possible to learn with improved learning accuracy while protecting personal information.

회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석 (Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.299-304
    • /
    • 2023
  • 인공지능 기법 중에서 딥러닝은 많은 곳에서 사용되어 효과가 입증된 모델이다. 하지만, 딥러닝 모델이 모든 곳에서 효과적으로 사용되는 것은 아니다. 이번 논문에서는 회귀분석과 딥러닝 모델의 비교를 통하여 딥러닝 모델이 가지는 한계점을 보여주고, 딥러닝 모델의 효과적인 사용을 위한 가이드를 제시하고자 한다. 추가로 딥러닝 모델의 최적화를 위해 사용되는 다양한 기법 중, 많이 사용되는 데이터 정규화와 데이터 셔플링 기법을 실제 데이터를 기반으로 비교 평가하여 딥러닝 모델의 정확성과 가치를 높이기 위한 기준을 제시하고자 한다.

Application of transfer learning for streamflow prediction by using attention-based Informer algorithm

  • Fatemeh Ghobadi;Doosun Kang
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.165-165
    • /
    • 2023
  • Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.

  • PDF

경량 딥러닝 기술 동향 (Recent R&D Trends for Lightweight Deep Learning)

  • 이용주;문용혁;박준용;민옥기
    • 전자통신동향분석
    • /
    • 제34권2호
    • /
    • pp.40-50
    • /
    • 2019
  • Considerable accuracy improvements in deep learning have recently been achieved in many applications that require large amounts of computation and expensive memory. However, recent advanced techniques for compacting and accelerating the deep learning model have been developed for deployment in lightweight devices with constrained resources. Lightweight deep learning techniques can be categorized into two schemes: lightweight deep learning algorithms (model simplification and efficient convolutional filters) in nature and transferring models into compact/small ones (model compression and knowledge distillation). In this report, we briefly summarize various lightweight deep learning techniques and possible research directions.

Pedestrian GPS Trajectory Prediction Deep Learning Model and Method

  • Yoon, Seung-Won;Lee, Won-Hee;Lee, Kyu-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.61-68
    • /
    • 2022
  • 본 논문에서는 딥러닝 모델 기반 보행자의 GPS 경로를 예측하는 시스템을 제안한다. 보행자 경로 예측은 보행자의 위험 및 충돌 상황들을 알림을 통해 방지할 수 있으며, 다양한 마케팅 등 비즈니스 면에서도 영향을 끼치는 연구이다. 또한 보행자 뿐 아니라 많은 각광을 받고 있는 무인 이동수단의 경로 예측에도 활용될 수 있다. 다양한 경로 예측 방식들 중 본 논문은 GPS 데이터를 활용하여 경로를 예측하는 연구이다. 시계열 데이터인 보행자의 GPS 경로를 학습하여 다음 경로를 예측하도록 하는 딥러닝 모델 기반 연구이다. 본 논문에서는 보행자의 GPS 경로를 딥러닝 모델이 학습할 수 있도록하는 데이터 셋 구성 방식을 제시하였으며, 예측 범위에 큰 제약이 없는 경로 예측 딥러닝 모델을 제안한다. 본 연구의 경로 예측 딥러닝 모델에 적합한 파라메터들을 제시하였으며, 우수한 예측 성능을 보이는 결과를 제시한다.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • 제40권1호
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

의료 영상 바이오마커 추출을 위한 딥러닝 손실함수 성능 비교 (Comparison of Deep Learning Loss Function Performance for Medical Video Biomarker Extraction)

  • 서진범;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.72-74
    • /
    • 2021
  • 다양한 분야에서 현재 활용되고 있는 딥러닝 과정은 데이터 준비, 데이터 전처리, 모델 생성, 모델 학습, 모델 평가로 구성 된다. 이중 모델 학습 과정에서 손실함수는 모델이 학습하면서 출력한 값을 실제 값과 비교하여 그 차이를 출력하게 되고, 출력된 손실값을 기반으로 모델은 역전파 알고리즘을 통해 손실값이 감소하는 방향으로 가중치를 수정해가며 학습을 진행한다. 본 논문에서는 바이오마커 추출을 위한 딥러닝 모델에서 사용될 신경망 출력 값의 손실도를 측정하여 출력해주는 다양한 손실함수를 분석하고 실험을 통해 최적의 손실함수를 찾아내고자 한다.

  • PDF