• Title/Summary/Keyword: Deep Learning based System

Search Result 1,194, Processing Time 0.025 seconds

Detection of PCB Components Using Deep Neural Nets (심층신경망을 이용한 PCB 부품의 검지 및 인식)

  • Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.11-15
    • /
    • 2020
  • In a typical initial setup of a PCB component inspection system, operators should manually input various information such as category, position, and inspection area for each component to be inspected, thus causing much inconvenience and longer setup time. Although there are many deep learning based object detectors, RetinaNet is regarded as one of best object detectors currently available. In this paper, a method using an extended RetinaNet is proposed that automatically detects its component category and position for each component mounted on PCBs from a high-resolution color input image. We extended the basic RetinaNet feature pyramid network by adding a feature pyramid layer having higher spatial resolution to the basic feature pyramid. It was demonstrated by experiments that the extended RetinaNet can detect successfully very small components that could be missed by the basic RetinaNet. Using the proposed method could enable automatic generation of inspection areas, thus considerably reducing the setup time of PCB component inspection systems.

Visual Positioning System based on Voxel Labeling using Object Simultaneous Localization And Mapping

  • Jung, Tae-Won;Kim, In-Seon;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.302-306
    • /
    • 2021
  • Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.

Automatic Metallic Surface Defect Detection using ShuffleDefectNet

  • Anvar, Avlokulov;Cho, Young Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.19-26
    • /
    • 2020
  • Steel production requires high-quality surfaces with minimal defects. Therefore, the detection algorithms for the surface defects of steel strip should have good generalization performance. To meet the growing demand for high-quality products, the use of intelligent visual inspection systems is becoming essential in production lines. In this paper, we proposed a ShuffleDefectNet defect detection system based on deep learning. The proposed defect detection system exceeds state-of-the-art performance for defect detection on the Northeastern University (NEU) dataset obtaining a mean average accuracy of 99.75%. We train the best performing detection with different amounts of training data and observe the performance of detection. We notice that accuracy and speed improve significantly when use the overall architecture of ShuffleDefectNet.

Infant cry recognition using a deep transfer learning method (딥 트랜스퍼 러닝 기반의 아기 울음소리 식별)

  • Bo, Zhao;Lee, Jonguk;Atif, Othmane;Park, Daihee;Chung, Yongwha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.971-974
    • /
    • 2020
  • Infants express their physical and emotional needs to the outside world mainly through crying. However, most of parents find it challenging to understand the reason behind their babies' cries. Failure to correctly understand the cause of a baby' cry and take appropriate actions can affect the cognitive and motor development of newborns undergoing rapid brain development. In this paper, we propose an infant cry recognition system based on deep transfer learning to help parents identify crying babies' needs the same way a specialist would. The proposed system works by transforming the waveform of the cry signal into log-mel spectrogram, then uses the VGGish model pre-trained on AudioSet to extract a 128-dimensional feature vector from the spectrogram. Finally, a softmax function is used to classify the extracted feature vector and recognize the corresponding type of cry. The experimental results show that our method achieves a good performance exceeding 0.96 in precision and recall, and f1-score.

Deep-learning-based gestational sac detection in ultrasound images using modified YOLOv7-E6E model

  • Tae-kyeong Kim;Jin Soo Kim;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.627-637
    • /
    • 2023
  • As the population and income levels rise, meat consumption steadily increases annually. However, the number of farms and farmers producing meat decrease during the same period, reducing meat sufficiency. Information and Communications Technology (ICT) has begun to be applied to reduce labor and production costs of livestock farms and improve productivity. This technology can be used for rapid pregnancy diagnosis of sows; the location and size of the gestation sacs of sows are directly related to the productivity of the farm. In this study, a system proposes to determine the number of gestation sacs of sows from ultrasound images. The system used the YOLOv7-E6E model, changing the activation function from sigmoid-weighted linear unit (SiLU) to a multi-activation function (SiLU + Mish). Also, the upsampling method was modified from nearest to bicubic to improve performance. The model trained with the original model using the original data achieved mean average precision of 86.3%. When the proposed multi-activation function, upsampling, and AutoAugment were applied, the performance improved by 0.3%, 0.9%, and 0.9%, respectively. When all three proposed methods were simultaneously applied, a significant performance improvement of 3.5% to 89.8% was achieved.

Transformer Based Deep Learning Techniques for HVAC System Anomaly Detection (HVAC 시스템의 이상 탐지를 위한 Transformer 기반 딥러닝 기법)

  • Changjoon Park;Junhwi Park;Namjung Kim;Jaehyun Lee;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.47-48
    • /
    • 2024
  • Heating, Ventilating, and Air Conditioning(HVAC) 시스템은 난방(Heating), 환기(Ventilating), 공기조화(Air Conditioning)를 제공하는 공조시스템으로, 실내 환경의 온도, 습도 조절 및 지속적인 순환 및 여과를 통해 실내 공기 질을 개선한다. 이러한 HVAC 시스템에 이상이 생기는 경우 공기 여과율이 낮아지며, COVID-19와 같은 법정 감염병 예방에 취약해진다. 또한 장비의 과부하를 유발하여, 시스템의 효율성 저하 및 에너지 낭비를 불러올 수 있다. 따라서 본 논문에서는 HVAC 시스템의 이상 탐지 및 조기 조치를 위한 Transformer 기반 이상 탐지 기법의 적용을 제안한다. Transformer는 기존 시계열 데이터 처리를 위한 기법인 Recurrent Neural Network(RNN)기반 모델의 구조적 한계점을 극복함에 따라 Long Term Dependency 문제를 해결하고, 병렬처리를 통해 효율적인 Feature 추출이 가능하다. Transformer 모델이 HVAC 시스템의 이상 탐지에서 RNN 기반의 비교군 모델보다 약 1.31%의 향상을 보이며, Transformer 모델을 통한 HVAC의 이상 탐지에 효율적임을 확인하였다.

  • PDF

Fast, Accurate Vehicle Detection and Distance Estimation

  • Ma, QuanMeng;Jiang, Guang;Lai, DianZhi;cui, Hua;Song, Huansheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.610-630
    • /
    • 2020
  • A large number of people suffered from traffic accidents each year, so people pay more attention to traffic safety. However, the traditional methods use laser sensors to calculate the vehicle distance at a very high cost. In this paper, we propose a method based on deep learning to calculate the vehicle distance with a monocular camera. Our method is inexpensive and quite convenient to deploy on the mobile platforms. This paper makes two contributions. First, based on Light-Head RCNN, we propose a new vehicle detection framework called Light-Car Detection which can be used on the mobile platforms. Second, the planar homography of projective geometry is used to calculate the distance between the camera and the vehicles ahead. The results show that our detection system achieves 13FPS detection speed and 60.0% mAP on the Adreno 530 GPU of Samsung Galaxy S7, while only requires 7.1MB of storage space. Compared with the methods existed, the proposed method achieves a better performance.

Deep learning-based recovery method for missing structural temperature data using LSTM network

  • Liu, Hao;Ding, You-Liang;Zhao, Han-Wei;Wang, Man-Ya;Geng, Fang-Fang
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.109-124
    • /
    • 2020
  • Benefiting from the massive monitoring data collected by the Structural health monitoring (SHM) system, scholars can grasp the complex environmental effects and structural state during structure operation. However, the monitoring data is often missing due to sensor faults and other reasons. It is necessary to study the recovery method of missing monitoring data. Taking the structural temperature monitoring data of Nanjing Dashengguan Yangtze River Bridge as an example, the long short-term memory (LSTM) network-based recovery method for missing structural temperature data is proposed in this paper. Firstly, the prediction results of temperature data using LSTM network, support vector machine (SVM), and wavelet neural network (WNN) are compared to verify the accuracy advantage of LSTM network in predicting time series data (such as structural temperature). Secondly, the application of LSTM network in the recovery of missing structural temperature data is discussed in detail. The results show that: the LSTM network can effectively recover the missing structural temperature data; incorporating more intact sensor data as input will further improve the recovery effect of missing data; selecting the sensor data which has a higher correlation coefficient with the data we want to recover as the input can achieve higher accuracy.

Recent Technologies for the Acquisition and Processing of 3D Images Based on Deep Learning (딥러닝기반 입체 영상의 획득 및 처리 기술 동향)

  • Yoon, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.112-122
    • /
    • 2020
  • In 3D computer graphics, a depth map is an image that provides information related to the distance from the viewpoint to the subject's surface. Stereo sensors, depth cameras, and imaging systems using an active illumination system and a time-resolved detector can perform accurate depth measurements with their own light sources. The 3D image information obtained through the depth map is useful in 3D modeling, autonomous vehicle navigation, object recognition and remote gesture detection, resolution-enhanced medical images, aviation and defense technology, and robotics. In addition, the depth map information is important data used for extracting and restoring multi-view images, and extracting phase information required for digital hologram synthesis. This study is oriented toward a recent research trend in deep learning-based 3D data analysis methods and depth map information extraction technology using a convolutional neural network. Further, the study focuses on 3D image processing technology related to digital hologram and multi-view image extraction/reconstruction, which are becoming more popular as the computing power of hardware rapidly increases.

Data Cleansing Algorithm for reducing Outlier (데이터 오·결측 저감 정제 알고리즘)

  • Lee, Jongwon;Kim, Hosung;Hwang, Chulhyun;Kang, Inshik;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.342-344
    • /
    • 2018
  • This paper shows the possibility to substitute statistical methods such as mean imputation, correlation coefficient analysis, graph correlation analysis for the proposed algorithm, and replace statistician for processing various abnormal data measured in the water treatment process with it. In addition, this study aims to model a data-filtering system based on a recent fractile pattern and a deep learning-based LSTM algorithm in order to improve the reliability and validation of the algorithm, using the open-sourced libraries such as KERAS, THEANO, TENSORFLOW, etc.

  • PDF