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Abstract 
 

A large number of people suffered from traffic accidents each year, so people pay more 
attention to traffic safety. However, the traditional methods use laser sensors to calculate the 
vehicle distance at a very high cost. In this paper, we propose a method based on deep learning 
to calculate the vehicle distance with a monocular camera. Our method is inexpensive and 
quite convenient to deploy on the mobile platforms. This paper makes two contributions. First, 
based on Light-Head RCNN, we propose a new vehicle detection framework called Light-Car 
Detection which can be used on the mobile platforms. Second, the planar homography of 
projective geometry is used to calculate the distance between the camera and the vehicles 
ahead. The results show that our detection system achieves 13FPS detection speed and 60.0% 
mAP on the Adreno 530 GPU of Samsung Galaxy S7, while only requires 7.1MB of storage 
space. Compared with the methods existed, the proposed method achieves a better 
performance.  
 
 
Keywords: Light-Car Detection, Deep learning, vehicle distance, object detection, mobile 
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1. Introduction 

In recent years, Unmanned and Assisted Driving have been developing dramatically. In 
driverless and assisted driving, obtaining the distance to the vehicle ahead accurately is a 
critical prerequisite for the normal driving of the car. In this field, various methods [1-9] have 
been proposed to calculate the distance between the driving vehicle and the vehicle ahead. 
There are roughly three tools that these methods rely on: traditional computer vision theory, 
laser sensors, and deep learning theory. The traditional computer vision based method [1, 2, 3, 
7, 8, 9] detects the presence of the preceding vehicle and calculates the distance by means of 
vanishing point detection, vehicle segmentation, particle filtering and road detection. However, 
most of these methods can only calculate the distance of single vehicle in the image of 
complicated scene. These methods rely heavily on hand-crafted feature, making it difficult to 
precisely calculate the distance between the host and the vehicle ahead in the case of 
complicated vehicle conditions or chaotic backgrounds. Geiger et al. [4] made great progress 
in calculating distance, who first used DPM to detect the vehicle and then calculated the 
distance to the vehicle ahead through the calibrated camera model. In this way, it can obtain 
the position and distance information of multiple vehicles at the same time. However, it is 
difficult to accurately obtain the vehicle position information in different scenarios with this 
camera model, so the accuracy is not improved. In the radar sensor-based approach [6, 7, 10], 
Chen et al. proposed that we can use the connected car network to calculate the distance 
between vehicles [7]. Tsai et al. used the Integrated Lane Departure Warning System (LDWS) 
[6] and Forward Collision Warning System (FCWS) to calculate the distance. However, 
considering that this method is complicated and expensive, a wide range of popularization and 
application will not be worth the candle. Chen et al. [5] tried to apply CNN directly to the 
vehicle distance information, but the results show that its performance is not significantly 
better than the traditional methods. In the existing method, the method of using only picture 
information cannot calculate the vehicle distance stably and accurately, so it is improper to 
make application when high security is required, such as Advanced Driver Assistance System 
(ADAS). The others making use of laser are too expensive to get widely used, which motivates 
our approach in this paper. 

This paper makes two contributions. First, based on Light-Head RCNN, we propose a new 
vehicle detection framework called Light-Car Detection which can be used on the mobile 
platforms. Second, the planar homography of projective geometry is used to calculate the 
distance between the camera and the vehicles ahead. Thanks to the development of deep 
learning, the accuracy of object detection has been improved notably. In this paper, an object 
detector based on convolutional neural network is proposed, which combines the homography 
transformation method to detect the vehicle and calculate the distance. In the implementation 
of the algorithm, we first trained a fast detector that can be applied to a variety of scenarios to 
determine the vehicle in a bounding box. Then, using the homography transformation between 
the plane and the image, the center point of the lower edge of the bounding box is projected 
onto the ground plane, so that the bounding box can be used as the scale for distance detection. 
But the detected bounding boxes are constantly shaking, so we use weighted NMS and object 
tracking to improve the stability and accuracy of the detection and calculation. Compared to 
traditional computer vision and deep learning methods, our method is faster, more accurate 
and suitable for a variety of scenarios, and achieve better results. The Mean Absolute Error 
(absolute difference between calculating distance and the truth distance) has been reduced by 
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three times compared to the methods of Geiger et al. and Chen et al. [4, 5], reaching 1.248m. 
As shown in Fig. 1, we can estimate the distance of the preceding car more accurately. In the 
figure, TDistance represents the true distance, and PDistance is the estimated distance. The 
implement steps of our proposed method are shown in Fig. 2. It contains a detection module, a 
calibration module and distance calculation module. In the following sections, we will 
describe each module in detail.  

 

  

  
Fig. 1. Some results predicted by our method, TD represents the true distance, and PD is the estimated 

distance. The distances are in meters. 
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Fig. 2. The implementation steps of the proposed framework. 

2. Vehicle Detection Method Selection 
In order to estimate the distance and implement the application, we hope that the algorithm can 
consume a small amount of memory while ensuring accuracy in the shortest possible running 
time. The rise of deep convolutional neural networks has led to significant development of 
object detection. The methods of real-time object detection consists of direct regression 
detection and region-based detection. SSD [20], YOLOV2 [21], RetinaNet [22] and 
YOLOV3[23] are direct regression detection methods. SSD presents a better performance  
than YOLOV2 and RetinaNet, while it has almost the same performance with YOLOV3. 
R-FCN [24], Light-Head R-CNN [25] and Faster-RCNN [28] are region-based detection 
method, and Light-Head R-CNN has better results in terms of speed and accuracy than 
Faster-RCNN and R-FCN. Unfortunately, SSD, YOLOV3 and Light-Head R-CNN only 
detect runtime on a computer GPU, but the platform on which each experiment relies is 
different, so it is impossible to compare speed and accuracy objectively and fairly. To clarify 
which algorithm performs better, we designed the experiments discussed in Section 2.1. 

2.1 Experimental configuration 

2.1.1 Feature extractors 
In order to enable the vehicle detection can obtain position information in real time, we use 
MobileNetV1 as a feature extractor for SSD, YOLOV3 and Light-Head R-CNN.  
MobileNetV1 is dedicated to effective inference in mobile vision applications. For the sake of 
discussion, we present an overview of  MobilenetV1 in Table 1. Its building block is a deeply 
detachable convolution, which decomposes standard volume integration into deep 
convolution and 1×1 convolution, effectively reducing computational cost and number of 
parameters.  
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In Light-Head R-CNN, we need to select a layer for predicting region proposals. In our 
experiments, each convolution layer of the feature extractor can be used to predict region 
proposals. However, taking it into consideration that the depth of the MobileNetV1 network is 
not enough, we use the conv5_5 layer as shown in Table 1 to predict region proposals.  

 
Table 1. The network structure of MobileNetV1. 

Name/Stride Filter Shape Inpute Size 
Conv1 /s2 3×3×3×32 224×224×3 

Conv2_1 /dw1 /s12 3×3×32 112×112×32 
Conv2_1 /s1 1×1×32×64 112×112×32 

Conv2_2 /dw /s23 3×3×64 112×112×64 
Conv2_2 /s1 1×1×64×128 56×56×64 

Conv3_1 /dw /s1 3×3×128 56×56×128 
Conv3_1 /s1 1×1×128×128 56×56×128 

Conv3_2 /dw /s2 3×3×128 56×56×128 
Conv3_2 /s1 1×1×128×256 28×28×128 

Conv4_1 /dw /s1 3×3×256 28×28×256 
Conv4_1 /s1 1×1×256×256 28×28×256 

Conv4_2 /dw /s2 3×3×256 28×28×256 
Conv4_2 /s1 1×1×256×512 14×14×256 

Conv5_1 /dw /s1 3×3×512 14×14×512 
Conv5_1 /s1 1×1×512×512 14×14×512 

Conv5_2 /dw /s1 3×3×512 14×14×512 
Conv5_2 /s1 1×1×512×512 14×14×512 

Conv5_3 /dw /s1 3×3×512 14×14×512 
Conv5_3 /s1 1×1×512×512 14×14×512 

Conv5_4 /dw /s1 3×3×512 14×14×512 
Conv5_4 /s1 1×1×512×512 14×14×512 

Conv5_5 /dw /s1 3×3×512 14×14×512 
Conv5_5 /s1 1×1×512×512 14×14×512 

Conv5_6 /dw /s2 3×3×512 14×14×512 
Conv5_6 /s1 1×1×512×1024 7×7×512 

Conv6 /dw /s1 3×3×1024 7×7×1024 
Conv6 /s1 1×1×1024×1024 7×7×1024 

Avg Pool /s1 7×7×1024 7×7×1024 
FC /s1 1024×1000 1×1×1024 

Softmax /s1 classifier 1×1×1000 
1 /dw represents convolution type is depthwise convolution. 
2 /s1 represents the filter stride size is 1. 
3 /s2 represents the filter stride size is 2 
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2.1.2 Dataset configure 
The Nexar2 dataset is a large collection of 50,000 images with bounding box annotations of 
the rear of vehicles from around the world in different lighting and weather conditions. The 
original image size is 1280 pixels wide and 720 pixels high. In the experiment, we only pay 
attention to the vehicles in the narrow field of view in front of the current vehicle, we crop a 
image of 300×300 pixels from the center of each original image. In this way, we can train the 
model with a smaller picture to get a shorter inference time.  

2.1.3 Hyperparameter tuning 
In the Nexar2 dataset, most of the images have very few object pixels. In order to improve the 
accuracy of small object detection, we add smaller anchors in the Light-Head R-CNN. Three 
aspect ratios {1:2,1:1,2:1} and five scales 162,322,642,1282,2562 are set to cover objects of 
different shapes. Since there are many proposals heavily overlapping with each other, 
non-maximum suppression (NMS) is used to reduce the number of proposals before feeding 
them into RoI prediction subnetwork for processing. We set the intersection-over-union (IoU) 
threshold to 0.7 for NMS. Then we assign anchors training labels based on their IoU ratios 
with ground-truth bounding boxes. If the anchor has IoU over 0.7 with any ground-truth box, it 
will be assigned a positive label, whereas if any anchor has IoU less than 0.3 with all 
ground-truth box, the label will be negative. We train with 2000 RoIs in each iteration as is 
described in detail in reference [28]. Simultaneously, we adopt online hard example mining 
(OHEM) [29] during training, and select 256 RoIs that have the highest loss to perform 
Backpropagation [30]. For SSD and YOLOV3, we use the configuration as described in Liu et 
al. [20] and Redmon et al. [23] respectively. 

2.2 Results 
In this section, we mainly evaluate the accuracy of the Light-Head R-CNN, SSD and 
YOLOV3 when applied to Nexar2 dataset. In the experiment we use Ubuntu16.04 operating 
system, Inter i5-7500 CPU, 8G memory and GTX1060 GPU training the network. For 
Light-Head R-CNN, the optimization method is SGD, and batch-size is 2. Learning rate is set 
to 0.01 for first 0.16M iterations (processing 1 image will be regarded as 1 iteration), and 0.001 
for later 0.08M iterations. For SSD, the optimization method is RMSProp optimization with an 
initial learning rate of 0.0001. For YOLOV3, the optimization method is Adam optimization 
with an initial learning rate of 0.0001. We use mean Average Precision (mAP) to measure the 
network accuracy. For Light-Head R-CNN, we use 300 RoIs to measure the network accuracy. 
In order to accelerate the inference, we merge the convolutional and Batch-normalization [15] 
layers. For a fair and objective comparison, we use the mobile optimization library MACE to 
perform code migration and test the speed of SSD, YOLOV3, Light-Head R-CNN. Finally, 
the accuracy and inference time of the three networks are shown in Table 2, from which it can 
be found that the accuracy of Light-Head R-CNN significantly outperform SSD and YOLOV3 
in nexar2 dataset. In addition, it is easier to increase the speed than to improve the accuracy, so 
we use Light-Head R-CNN in our task. 

We analyzed the reason for the results. In general, low-resolution feature maps have larger 
receptive field and are easier to detect large objects, whereas high-resolution feature maps are 
applicative for detecting small objects. The SSD does not choose to use low-level features,  but 
builds the pyramid from the high layers in the MobileNetV1 network and adds several new 
CNN layers instead. Thus it misses the opportunity to reuse the higher-resolution maps of the 
feature hierarchy, leading to instability. For YOLOV3, it dose not solve the problem of 
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foreground-background class imbalance very well. For Light-Head R-CNN, it uses RPN to 
rapidly reduce the number of candidate boxes. In the second classification stage, OHEM is 
used to keep balance between foreground and background, so the network is fully trained and 
its ability to detect small objects is stronger. Therefore, on the Nexar2 dataset which conforms 
to real driving situation, the SSD detection accuracy is weaker than that of Light-Head 
R-CNN. 

 
Table 2. Performance comparison of Light-Head R-CNN and SSD on NEXAR2 validation set. 

 
Model 

 
Backbone 

Test Size 
short/max 

edge 

 
Speed(ms) 

 
mAP 

Light-Head RCNN MobileNet 300/300 5011 62.1 
SSD MobileNet 300/300 2931 59.9 

YOLOV3 MobileNet 300/300 2001 53.6 
Light-Head RCNN MobileNet 300/300 36.22 62.1 

SSD MobileNet 300/300 18.72 59.9 
YOLOV3 MobileNet 300/300 152 53.6 

1CPU milliseconds on Intel Core i5-7500, 3.40 GHz 
1GPU milliseconds on GTX1060 

3. Light-Car Detection 
The Light-Head R-CNN can meet real-time requirements on the GPU of computer, but its 
inference time on the CPU or GPU of mobile device is long so it is impossible to run in 
real-time. Consequently, we have to improve the Light-Head R-CNN network to make it run 
faster. To run the neural network on mobile devices, we need to reduce the storage and 
computation costs of neural network. Generally, there are two directions for decreasing 
computation costs and the number of parameters: the first is to use a network module with less 
parameters; the second is to prune the trained network and then retraining. In this paper, we 
use both two methods to reduce the number of network parameters. In section 3, we use 
bottleneck module to build the detection network. In section 4, we prune and retrain the trained 
detection network. 

3.1 Thin feature maps 
For a standard convolution, the structure is shown in Fig. 3(A). Its cost is  

 out inw h C k k C⋅ ⋅ ⋅ ⋅ ⋅   (1) 
Its parameter size is 

 out ink k C C⋅ ⋅ ⋅   (2) 
Where w, h and outC  are the width, height, the number of output channels of output feature 
map respectively, k is the size of convolution kernel, inC  is the number of channels of input 
feature map. 
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In the Light-Head R-CNN, the thin feature maps structure is shown in Fig. 3(B). It is called 
large separable convolution. In this structure, the size of input tensor is inw h C× × , the size of 
output tensor is outw h C× × , so the structure have the computational cost of 

 2 2mid in out midw h C k C w h C k C⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅   (3) 
Its parameter size is 

 2 2mid out in midk C C k C C⋅ ⋅ ⋅ + ⋅ ⋅ ⋅   (4) 
Where midC  is the output channels of middle layer in large separable convolution module. 

In this paper, we use bottleneck instead of large separable convolution, whose structure is 
shown in Fig. 3(C). It has the computational cost of 

 dmid in mid ut miow h C C w h C k k w h C C⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅   (5) 
Its parameter size is  

 in mid mid mid mid outC C k k C C C C⋅ + ⋅ ⋅ ⋅ + ⋅   (6) 

 
Fig. 3. Overview of three different structures. Dconvolution represents depthwise convolution. 

 
We let k be 3, outC , inC  and midC be 64, 512 and 64 respectively. In order to reduce the loss 

of information, we removed the relu layer behind the depthwise convolution layer. Compared 
to the large separable convolution and the standard convolution, the bottleneck dramatically 
reduces both parameters and computational costs as shown in Table 3. We also compare mAP 
between the large separable convolution and the bottleneck, and the results are shown in Table 
4. The bottleneck is a more efficient model, but its accuracy is slightly low. 
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Table 3. Comparison of the parameters and the computational costs of three different structures with w 
be 8 and h be 30 on NEXAR2 validation set. 

Method Params Mult-Adds 
Standard convolution 0.29M1 70.8M 

Large separable convolution 0.22M 53.1M 
Bottleneck 0.07M 9.0M 

                         1 M represents million 
 
Table 4. Performance comparison of large separable convolution and bottleneck on NEXAR2 
validation set. 

Method mAP 
Large separable convolution 62.2 

Bottleneck 62.1 

3.2 RPN 
Since there are fewer classes in the Nexar2 dataset and the features are easier to extract, we 
change the RPN convolution channel from 256 to 128 channels, whose results are shown in 
Table 5. The accuracy has increased slightly, and we speculate that this is because we double 
the initial learning rate for training. 
 
Table 5. The modified RPN performance has improved. The performance is evaluated on NEXAR2 
validation set. 

RPN mAP 
256 62.1 
128 63.2 

 
We named the modified network Light-Car Detection. In Table 6, we compare Light-Car 

Detection with the original network. The results show the performance is better and the 
calculation speed is faster.  
 
Table 6. Performance comparison of Light-Head R-CNN and Light-Car Detection on NEXAR2 
validation set. 

 
Model 

 
Backbone 

Test Size 
short/max 

edge 

 
Speed(ms)1 

 
mAP 

Light-Head RCNN MobileNet 300/300 501 62.1 
Light-Car Detection MobileNet 300/300 276 63.2 

Light-Head RCNN MobileNet 300/300 36.2(GPU) 62.1 
Light-Car Detection MobileNet 300/300 17(GPU) 63.2 

1 Speed is the time required to process an image. 
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4. Pruning filters 
Due to the limited computational ability and insufficient power resources of mobile devices, 
we need to prune filter of Light-Car Detection. There are many methods for pruning filters, 
one is based on data [36], and another is based on the amplitude of filters, such as [37, 38]. In 
this paper, we use L1-norm to select unimportant filters and physically prune them. Light-Car 
Detection has three different convolutions, standard convolution, depthwise convolution, and 
pointwise convolution. In comparison, depthwise convolution is an efficient one, so we only 
prune filters of standard convolution and pointwise convolution. We divide the procedure of 
pruning into four steps: First, we calculate the L1-norm of filters on each layer. In each layer, 
we compute the ratios of the L1-norm of each filter and the maximum of the L1-norm in this 
layer. After that, we count the proportion of the filter whose L1-norm ratio is less than a given 
value, and the result is shown in Fig. 4. Second, we prune several filters with small L1-norm 
and their corresponding feature maps. The kernels on the next convolutional layer and 
parameters in the next batch-normalization layer corresponding to the pruned feature maps are 
removed. From Fig. 4, we can find that the L1-norm of 10% convolution kernels is very low 
on the conv1 and conv2_1 /dw layers, so we remove these kernels. Third, we fine-tune 
Light-Car Detection using 10k mini-batches with 0.0001 learning rate on nexar2 dataset. In 
the process of pruning filters, we find conv1 and conv2* stages are more sensitive than conv3*, 
conv4* conv5* stages, where conv2* represents conv2_1, conv2_2, so it is with conv3*, 
conv4* and conv5*. After multiple pruning, the accuracy and running times of Light-Car 
Detection are shown in Table 7. It is worth noting that after pruning, Light-Car Detection is 
more efficient with only slightly accuracy loss. 

 
Fig. 4. Sorting filters by ratios for each layer of Light-Car Detection on nexar2. The y-axis is the given 
value. The x-axis is the proportion of the filter whose L1-norm ratio is less than a given value.  
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Table 7. The number of parameters, accuracy and running time after pruning filters. The performance is 
evaluated on NEXAR2 validation set. 

 
 

Model 
 

Backbone 
Test Size 
short/max 

edge 

 
Speed(ms) 

 
mAP 

 
Params(M)1 

Light-Head RCNN MobileNet 300/300 501 62.1 13.3 
Light-Car 

Detection F2 
MobileNet 300/300 200 63.2 13.0 

Light-Car 
Detection L3 

MobileNet 300/300 183 60.0 7.1 

Light-Car 
Detection L3 

MobileNet 300/300 10.9(GPU) 60.0 7.1 

1 Number of million bytes occupied by the network. 
2 F represents the first time pruning network. 
3 L represents the last time pruning network. 

5. Stability of detection 
The current evaluation criteria for object detection performance depends mainly on the IOU, 
but stability is also an essential factor to consider in our mission. If the center and scale of the 
detection bounding box of the detected target object are erratic, the distance between the 
current vehicle and the vehicle ahead we calculated will be unstable and not accurate enough. 
Therefore, ensuring a certain stability is necessary for reliable results. In order to reduce the 
jitter of the detection bounding boxes and ensure the real-time processing, we use the 
following two methods to improve the stability and evaluate the performance using method 
proposed by Zhang et al. [32]. 

5.1 Using weighted NMS to improve the detection stability 
In the object detection methods, after scoring each proposal box according to the degree of 
coincidence, the NMS is generally used to suppress the redundant detection bounding box. 
The NMS selects the highest scored bounding box and suppresses the bounding box where the 
IOU value is higher than the set threshold. Admittedly, these suppressed borders also contain 
some useful information, so suppressing them can result in the loss of valid information. In 
this paper, we use weighted NMS [33] instead of NMS. In weighted NMS, the target bounding 
box coordinates are refined by all candidate bounding boxes. By using this method, the mAP 
and stability of object detection can be improved. 

5.2 Using tracking to improve the detection stability 
In video detection, bounding box jitter is unavoidable. We use the Median Flow (MF) [34], a 
short-term and efficient tracking method to track the bounding boxes. In the specific 
implementation process, we only track the bounding box with a score higher than 0.8. When 
the MF tracker reports reliable tracking bounding box, we obtain a target bounding box with a 
high IOU value, and then average the two bounding boxes to optimize the result.  
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6. Calculating vehicle distance 
A portion of the road in front of the vehicle can be considered to be on the ground plane such 
that there is a homography transformation between the image and the ground [35]. The 
formula is  

P H p= ⋅                                                                       (7) 
Where p represents the point in the image, and P the point on the ground. The 

homography transformation H can be calculated by using 4 markers on the ground as shown in 
Fig. 5.  We setup the ground coordinates as the x-axis coincide with the front of host vehicle, 
and the y-axis the moving direction. If it is assumed that the lower edge of the detected object's 
bounding box coincides with the ground, then any point p  on the lower edge can be used to 
calculate the distance between the camera and the vehicle ahead. We use the center point of the 
lower edge of bounding box. 
 

 
Fig. 5. The calculation method of homography transformation between the flat ground plane and the 
image, p  is the center point of the lower edge of bounding box, so the distance is the y-coordinate 

of P . 

7. Experiments 
In this section, we first evaluate the accuracy and inference time of Light-Car Detection using 
the nexar2 dataset on PC. Aside from that, we evaluate the effect of weighted NMS and object 
tracking stability. After that, we use the mobile optimization library MACE to deploy 
Light-Car Detection to the smart phone and measure its inference time. Finally, we count the 
errors of our method in calculating the vehicle distance, and compare with methods using 
monocular camera. 

7.1 Testing on PC 
We test the runtimes on CPU and GPU under the condition of Ubuntu16.04 operating system, 
Inter i5-7500 CPU, 8G memory and GTX1060 GPU training network. The accuracy and 
inference time are shown in Table 7. Some detection results are given in Fig. 6 to quantitative 
analysis the performance of proposed network.  
 



622                                                                                                Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation 

  

  
Fig. 6. Some examples of Light-Car Detection on the KITTI dataset. 

 

7.2 Stability analysis 
We measure object stability on KITTI object tracking dataset. In this dataset, the ground-truth 
3D box surrounds the entire object in 3D space, but what we favored is the 2D bounding box of 
rear of the vehicle. We use the calibrated camera to project the 3D coordinates of the vehicle's 
4 tail points to the image, and then we create the minimum bounding rectangle with these 
points as the real ground box. As shown in Fig. 7, the blue box is the 3D box of the car. The 
stability of the detection is measured by the scale and ratio of the bounding box, and the 
difference of positions of the center point [32]. The smaller the resulting value, the higher the 
stability of the test. We can find it in Fig. 8a and Fig. 8b that the weighted NMS and tracking 
can ensure the stability of the bounding box to a certain extent with keeping the stability of the 
center positions.  
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Fig. 7. The 3D car is surrounded by a 3D blue box, 4 tail points on the rear of the 3D box are projected 
to the image to create ground truth box. Here, we use the coordinate system defined in KITTI dataset. 

  
Fig. 8(a). Scale and ratio Error with respect to the 

overlap threshold1 
Fig. 8(b). Center Position Error with respect to the 

overlap threshold1 

1The overlap is the IOU between predicted bounding box and ground truth box. 

7.3 Deploying on mobile platforms 
Mobile applications are benefited from the development of the deep learning, but mobile 
hardware (e.g. GPU and memory size) is limited compared to the desktop. After comparing 
several open source mobile deep learning frameworks, we chose MACE because it requires 
less memory and less time when inferring the trained model. To evaluate mobile-based 
inference, we use a Samsung Galaxy S7 mobile phone under Android 6.0 to run our trained 
model. The inference time is shown in Table 8, which satisfies real-time requirements on 
Adreno 530 GPU.  
 

Table 8. Inference time on Samsung Galaxy S7. 
SmartPhone Device Model Image Size Time(ms) 

SamSung Galaxy S7 CPU Snapdragon 820 300 300×  215 
SamSung Galaxy S7 GPU Adreno 530 300 300×  78.4 

 



624                                                                                                Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation 

7.4 Car distance evaluation on the KITTI dataset 
Recently, Geiger et al. [4] presented DPM based on conventional computer vision and Chen et 
al. [5] presented DeepDriving based on the convolutional neural network end-to-end distance 
prediction. Both of them achieve superior performance than previous methods. In this paper, 
we make a comparison with the two methods on the KITTI dataset. 

The KITTI 3D object detection dataset contains a training set of 7480 images and a test set 
of 7480 images. In training set, all images emerge with official 3D labels for the positions of 
nearby cars, so we can easily extract the distance to other cars in the image. For each image, 
we define a 2D coordinate system on the zero height plane. The origin of the coordinate 
system is the center of the camera, the positive direction of the y-axis is directly in front of the 
direction of travel of the vehicle, and the direction of the x-axis is the right side perpendicular 
to the direction of travel. In the picture of the dataset, each picture contains multiple vehicles 
but only the most recent ones (one is on the left of the host car, one on its right, one on its 
ahead) in the DeepDriving method are selected for error estimation. We are consistent with 
this process. We divide the area in front of the current car into three parts according to the 
value range of the x coordinate: when [ 1.6,1.6]x ∈ −  , it is regarded as the area directly in 
front; when [ 12, 1.6]x ∈ − − , it is regarded as the left area; When [1.6,12]x ∈ , it is regarded 
as the right area; For our detection method, we may detect partial cars which only partially 
appear on the left lower corner or right lower corner. These cars are unlikely to locate at the 
ahead of host car and calculating the distance of these cars is inaccurate. Simultaneously, in 
DeepDriving and DPM, they do not count errors of these partial cars, so we also only count 
errors when the closest cars fully appear in the image. In DeepDriving and DPM, they count 
errors when cars show up within 50 meters ahead, in here, we are consistent with DeepDriving 
and DPM.  We use the metrics proposed by Chen et al. [5] to evaluate errors, calculating The 
Mean Absolute Error (MAE) for the y  and x  coordinates and the Euclidean distance d  
between the estimation and the ground truth of the car position. The results are shown in Table 
9. We give two results of our approaches, one is without WNMS and tracking the other has 
WNMS and tracking. Compared with DeepDriving and DPM, we obtain superior 
performance. 
 
 

Table 9. Mean Absolute Error (in meters) on KITTI 3D object detection dataset. 
Parameter x  y  d  

DeepDriving 1.097 4.332 4.669 
DPM+Proj 1.214 5 5.331 

Our approach 
(w/o WNMS+Tracking) 

0.087 1.555 1.562 

Our approach 0.094 1.248 1.258 
 
 

When the vehicles ahead are far away from host car, namely as the distances increase, the 
absolute value of the difference between the obtained distance and the true value becomes 
larger as well. The result is shown in Fig. 9. It is noticed that even with a distance of 50 meters 
from the front car, our error is only about 4 meters. In practical applications, the error is 
acceptable. 
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Fig. 9. The difference between the obtained distance and the true value at different car distances. 
 
 

7.5 Car distance evaluation on the smart phone 

To evaluate the performance of our approach in real-world, we also evaluate our approach 
using smartphone. Firstly, we collected 200 images, which contain 20 scenes, each scene 
contains 10 images. For each scene, the homography matrix was pre-computed. For each 
image, we used a meter ruler to measure the distance between the vehicle and the calibration 
board. Some examples are shown in Fig. 10. For quantitative evaluation, we use Mean 
Absolute Error to reflect the performance of our method. The results are shown in Table 10. 
The result shows that our method also can achieve good performance in the real-word scene. 
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Fig. 10. Some examples of our method on smart phone. 

 
Table 10. The value of Mean Absolute Error (in meters) in different distance. 

Distance MAE 
0<d<10 0.268 

10<=d<20 1.457 
20<=d<50 1.842 

7.6 Compared with monocular depth estimation 
Estimating the pixel-wise depth of scenes from RGB images has triggered wide research 

recently in the computer vision community. There have been many methods in the field of 
monocular depth estimation, which all use convolutional neural networks (CNNs) to 
end-to-end estimate the depth of scenes. Naturally, the methods of monocular depth estimation 
also can estimate the distance of ahead vehicle. In this paper, we compare our method with the 
state-of-art methods [41-44] of monocular depth estimation. In order to make the results fair 
and convincing, we all use the central point of lower edge of predicted bounding box to 
calculate the quantitative metrics in monocular depth estimation. Aside from that, we use 6 
metrics [40] which are widely used in the field of monocular depth estimation to evaluate the 
performance. These metrics are shown as follow: 
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Threshold accuracy ( iδ ): %  of pd  s.t 
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*
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    Average relative error (rel): 
*

1 p p

p

d dn
pn d

−
∑ . 

    Average squared relative error (sq. rel): 
2*

1 p p

p

d dn
pn d

−
∑ . 

    Root mean squared error (rms): * 21 ( )n
p p pn d d∑ − . 

    Average error (log10): *1
10 10log ( ) log ( )n

p p pn d d∑ − . 

Where pd  is a pixel in the ground truth depth image, *
pd  is a pixel in the predicted depth 

image, and n is the number of valid pixels. 
The results are provided in Table 11. We are able to achieve more accurate distance of 

ahead vehicle than monocular depth estimation. 
 

Table 11. Comparison between our method and the method using monocular depth estimation on the 
KITTI dataset. The best results are bolded. 

Method 
1δ  2δ  3δ  Rel sq. rel rms log10 

DORN [41] 0.959 0.994 0.9991 0.060 0.302 3.105 0.091 
Kuznietsov et al. [42] 0.924 0.982 0.996 0.085 0.600 4.226 0.127 
Monodepth2 [43] 0.901 0.963 0.980 0.107 1.049 5.050 0.191 
MonoResMatch [44] 0.909 0.959 0.981 0.096 1.233 6.191 0.171 
Ours 0.995 0.998 12 0.047 0.172 2.798 0.020 
 Higher  is better             Lower is better 

1The more accurate numeric is 0.99883 
2The more accurate numeric is 0.99992 

8. Conclusion 

In this paper, we present a Light-Car Detection method to detect distance of the vehicles ahead. 
We combine the deep learning with traditional computer vision, using WNMS and MF 
tracking to improve the detection stability and accuracy. We refined thin feature maps and 
RPN subnetwork. The pruned network achieves 13FPS on Samsung Galaxy S7 mobile phone. 
We compare with two methods which is used in predicting the vehicle distance and four 
monocular depth estimation methods which predict the depth of scenes end-to-end. 
Experimental results show that our approach obtains superior performance. 
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