
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, Feb. 2020 610
Copyright ⓒ 2020 KSII

Fast, Accurate Vehicle Detection and
Distance Estimation

QuanMeng Ma1, Guang Jiang1*, DianZhi Lai1, Hua cui2, Huansheng Song2

 1School of Telecommunication Engineering, Xidian University, Xi’an, China.
2School of information engineering, Chang’an University. Xi’an, China.

 [e-mail: gjiang@mail.xidian.edu.cn]
*Corresponding author: Guang Jiang

Received June 5, 2019; revised August 10, 2019; accepted September 15, 2019;

published February 29, 2020

Abstract

A large number of people suffered from traffic accidents each year, so people pay more
attention to traffic safety. However, the traditional methods use laser sensors to calculate the
vehicle distance at a very high cost. In this paper, we propose a method based on deep learning
to calculate the vehicle distance with a monocular camera. Our method is inexpensive and
quite convenient to deploy on the mobile platforms. This paper makes two contributions. First,
based on Light-Head RCNN, we propose a new vehicle detection framework called Light-Car
Detection which can be used on the mobile platforms. Second, the planar homography of
projective geometry is used to calculate the distance between the camera and the vehicles
ahead. The results show that our detection system achieves 13FPS detection speed and 60.0%
mAP on the Adreno 530 GPU of Samsung Galaxy S7, while only requires 7.1MB of storage
space. Compared with the methods existed, the proposed method achieves a better
performance.

Keywords: Light-Car Detection, Deep learning, vehicle distance, object detection, mobile
platform.

http://doi.org/10.3837/tiis.2020.02.008 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 611

1. Introduction

In recent years, Unmanned and Assisted Driving have been developing dramatically. In
driverless and assisted driving, obtaining the distance to the vehicle ahead accurately is a
critical prerequisite for the normal driving of the car. In this field, various methods [1-9] have
been proposed to calculate the distance between the driving vehicle and the vehicle ahead.
There are roughly three tools that these methods rely on: traditional computer vision theory,
laser sensors, and deep learning theory. The traditional computer vision based method [1, 2, 3,
7, 8, 9] detects the presence of the preceding vehicle and calculates the distance by means of
vanishing point detection, vehicle segmentation, particle filtering and road detection. However,
most of these methods can only calculate the distance of single vehicle in the image of
complicated scene. These methods rely heavily on hand-crafted feature, making it difficult to
precisely calculate the distance between the host and the vehicle ahead in the case of
complicated vehicle conditions or chaotic backgrounds. Geiger et al. [4] made great progress
in calculating distance, who first used DPM to detect the vehicle and then calculated the
distance to the vehicle ahead through the calibrated camera model. In this way, it can obtain
the position and distance information of multiple vehicles at the same time. However, it is
difficult to accurately obtain the vehicle position information in different scenarios with this
camera model, so the accuracy is not improved. In the radar sensor-based approach [6, 7, 10],
Chen et al. proposed that we can use the connected car network to calculate the distance
between vehicles [7]. Tsai et al. used the Integrated Lane Departure Warning System (LDWS)
[6] and Forward Collision Warning System (FCWS) to calculate the distance. However,
considering that this method is complicated and expensive, a wide range of popularization and
application will not be worth the candle. Chen et al. [5] tried to apply CNN directly to the
vehicle distance information, but the results show that its performance is not significantly
better than the traditional methods. In the existing method, the method of using only picture
information cannot calculate the vehicle distance stably and accurately, so it is improper to
make application when high security is required, such as Advanced Driver Assistance System
(ADAS). The others making use of laser are too expensive to get widely used, which motivates
our approach in this paper.

This paper makes two contributions. First, based on Light-Head RCNN, we propose a new
vehicle detection framework called Light-Car Detection which can be used on the mobile
platforms. Second, the planar homography of projective geometry is used to calculate the
distance between the camera and the vehicles ahead. Thanks to the development of deep
learning, the accuracy of object detection has been improved notably. In this paper, an object
detector based on convolutional neural network is proposed, which combines the homography
transformation method to detect the vehicle and calculate the distance. In the implementation
of the algorithm, we first trained a fast detector that can be applied to a variety of scenarios to
determine the vehicle in a bounding box. Then, using the homography transformation between
the plane and the image, the center point of the lower edge of the bounding box is projected
onto the ground plane, so that the bounding box can be used as the scale for distance detection.
But the detected bounding boxes are constantly shaking, so we use weighted NMS and object
tracking to improve the stability and accuracy of the detection and calculation. Compared to
traditional computer vision and deep learning methods, our method is faster, more accurate
and suitable for a variety of scenarios, and achieve better results. The Mean Absolute Error
(absolute difference between calculating distance and the truth distance) has been reduced by

612 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

three times compared to the methods of Geiger et al. and Chen et al. [4, 5], reaching 1.248m.
As shown in Fig. 1, we can estimate the distance of the preceding car more accurately. In the
figure, TDistance represents the true distance, and PDistance is the estimated distance. The
implement steps of our proposed method are shown in Fig. 2. It contains a detection module, a
calibration module and distance calculation module. In the following sections, we will
describe each module in detail.

Fig. 1. Some results predicted by our method, TD represents the true distance, and PD is the estimated

distance. The distances are in meters.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 613

Fig. 2. The implementation steps of the proposed framework.

2. Vehicle Detection Method Selection
In order to estimate the distance and implement the application, we hope that the algorithm can
consume a small amount of memory while ensuring accuracy in the shortest possible running
time. The rise of deep convolutional neural networks has led to significant development of
object detection. The methods of real-time object detection consists of direct regression
detection and region-based detection. SSD [20], YOLOV2 [21], RetinaNet [22] and
YOLOV3[23] are direct regression detection methods. SSD presents a better performance
than YOLOV2 and RetinaNet, while it has almost the same performance with YOLOV3.
R-FCN [24], Light-Head R-CNN [25] and Faster-RCNN [28] are region-based detection
method, and Light-Head R-CNN has better results in terms of speed and accuracy than
Faster-RCNN and R-FCN. Unfortunately, SSD, YOLOV3 and Light-Head R-CNN only
detect runtime on a computer GPU, but the platform on which each experiment relies is
different, so it is impossible to compare speed and accuracy objectively and fairly. To clarify
which algorithm performs better, we designed the experiments discussed in Section 2.1.

2.1 Experimental configuration

2.1.1 Feature extractors
In order to enable the vehicle detection can obtain position information in real time, we use
MobileNetV1 as a feature extractor for SSD, YOLOV3 and Light-Head R-CNN.
MobileNetV1 is dedicated to effective inference in mobile vision applications. For the sake of
discussion, we present an overview of MobilenetV1 in Table 1. Its building block is a deeply
detachable convolution, which decomposes standard volume integration into deep
convolution and 1×1 convolution, effectively reducing computational cost and number of
parameters.

614 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

In Light-Head R-CNN, we need to select a layer for predicting region proposals. In our
experiments, each convolution layer of the feature extractor can be used to predict region
proposals. However, taking it into consideration that the depth of the MobileNetV1 network is
not enough, we use the conv5_5 layer as shown in Table 1 to predict region proposals.

Table 1. The network structure of MobileNetV1.

Name/Stride Filter Shape Inpute Size
Conv1 /s2 3×3×3×32 224×224×3

Conv2_1 /dw1 /s12 3×3×32 112×112×32
Conv2_1 /s1 1×1×32×64 112×112×32

Conv2_2 /dw /s23 3×3×64 112×112×64
Conv2_2 /s1 1×1×64×128 56×56×64

Conv3_1 /dw /s1 3×3×128 56×56×128
Conv3_1 /s1 1×1×128×128 56×56×128

Conv3_2 /dw /s2 3×3×128 56×56×128
Conv3_2 /s1 1×1×128×256 28×28×128

Conv4_1 /dw /s1 3×3×256 28×28×256
Conv4_1 /s1 1×1×256×256 28×28×256

Conv4_2 /dw /s2 3×3×256 28×28×256
Conv4_2 /s1 1×1×256×512 14×14×256

Conv5_1 /dw /s1 3×3×512 14×14×512
Conv5_1 /s1 1×1×512×512 14×14×512

Conv5_2 /dw /s1 3×3×512 14×14×512
Conv5_2 /s1 1×1×512×512 14×14×512

Conv5_3 /dw /s1 3×3×512 14×14×512
Conv5_3 /s1 1×1×512×512 14×14×512

Conv5_4 /dw /s1 3×3×512 14×14×512
Conv5_4 /s1 1×1×512×512 14×14×512

Conv5_5 /dw /s1 3×3×512 14×14×512
Conv5_5 /s1 1×1×512×512 14×14×512

Conv5_6 /dw /s2 3×3×512 14×14×512
Conv5_6 /s1 1×1×512×1024 7×7×512

Conv6 /dw /s1 3×3×1024 7×7×1024
Conv6 /s1 1×1×1024×1024 7×7×1024

Avg Pool /s1 7×7×1024 7×7×1024
FC /s1 1024×1000 1×1×1024

Softmax /s1 classifier 1×1×1000
1 /dw represents convolution type is depthwise convolution.
2 /s1 represents the filter stride size is 1.
3 /s2 represents the filter stride size is 2

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 615

2.1.2 Dataset configure
The Nexar2 dataset is a large collection of 50,000 images with bounding box annotations of
the rear of vehicles from around the world in different lighting and weather conditions. The
original image size is 1280 pixels wide and 720 pixels high. In the experiment, we only pay
attention to the vehicles in the narrow field of view in front of the current vehicle, we crop a
image of 300×300 pixels from the center of each original image. In this way, we can train the
model with a smaller picture to get a shorter inference time.

2.1.3 Hyperparameter tuning
In the Nexar2 dataset, most of the images have very few object pixels. In order to improve the
accuracy of small object detection, we add smaller anchors in the Light-Head R-CNN. Three
aspect ratios {1:2,1:1,2:1} and five scales 162,322,642,1282,2562 are set to cover objects of
different shapes. Since there are many proposals heavily overlapping with each other,
non-maximum suppression (NMS) is used to reduce the number of proposals before feeding
them into RoI prediction subnetwork for processing. We set the intersection-over-union (IoU)
threshold to 0.7 for NMS. Then we assign anchors training labels based on their IoU ratios
with ground-truth bounding boxes. If the anchor has IoU over 0.7 with any ground-truth box, it
will be assigned a positive label, whereas if any anchor has IoU less than 0.3 with all
ground-truth box, the label will be negative. We train with 2000 RoIs in each iteration as is
described in detail in reference [28]. Simultaneously, we adopt online hard example mining
(OHEM) [29] during training, and select 256 RoIs that have the highest loss to perform
Backpropagation [30]. For SSD and YOLOV3, we use the configuration as described in Liu et
al. [20] and Redmon et al. [23] respectively.

2.2 Results
In this section, we mainly evaluate the accuracy of the Light-Head R-CNN, SSD and
YOLOV3 when applied to Nexar2 dataset. In the experiment we use Ubuntu16.04 operating
system, Inter i5-7500 CPU, 8G memory and GTX1060 GPU training the network. For
Light-Head R-CNN, the optimization method is SGD, and batch-size is 2. Learning rate is set
to 0.01 for first 0.16M iterations (processing 1 image will be regarded as 1 iteration), and 0.001
for later 0.08M iterations. For SSD, the optimization method is RMSProp optimization with an
initial learning rate of 0.0001. For YOLOV3, the optimization method is Adam optimization
with an initial learning rate of 0.0001. We use mean Average Precision (mAP) to measure the
network accuracy. For Light-Head R-CNN, we use 300 RoIs to measure the network accuracy.
In order to accelerate the inference, we merge the convolutional and Batch-normalization [15]
layers. For a fair and objective comparison, we use the mobile optimization library MACE to
perform code migration and test the speed of SSD, YOLOV3, Light-Head R-CNN. Finally,
the accuracy and inference time of the three networks are shown in Table 2, from which it can
be found that the accuracy of Light-Head R-CNN significantly outperform SSD and YOLOV3
in nexar2 dataset. In addition, it is easier to increase the speed than to improve the accuracy, so
we use Light-Head R-CNN in our task.

We analyzed the reason for the results. In general, low-resolution feature maps have larger
receptive field and are easier to detect large objects, whereas high-resolution feature maps are
applicative for detecting small objects. The SSD does not choose to use low-level features, but
builds the pyramid from the high layers in the MobileNetV1 network and adds several new
CNN layers instead. Thus it misses the opportunity to reuse the higher-resolution maps of the
feature hierarchy, leading to instability. For YOLOV3, it dose not solve the problem of

616 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

foreground-background class imbalance very well. For Light-Head R-CNN, it uses RPN to
rapidly reduce the number of candidate boxes. In the second classification stage, OHEM is
used to keep balance between foreground and background, so the network is fully trained and
its ability to detect small objects is stronger. Therefore, on the Nexar2 dataset which conforms
to real driving situation, the SSD detection accuracy is weaker than that of Light-Head
R-CNN.

Table 2. Performance comparison of Light-Head R-CNN and SSD on NEXAR2 validation set.

Model

Backbone

Test Size
short/max

edge

Speed(ms)

mAP

Light-Head RCNN MobileNet 300/300 5011 62.1
SSD MobileNet 300/300 2931 59.9

YOLOV3 MobileNet 300/300 2001 53.6
Light-Head RCNN MobileNet 300/300 36.22 62.1

SSD MobileNet 300/300 18.72 59.9
YOLOV3 MobileNet 300/300 152 53.6

1CPU milliseconds on Intel Core i5-7500, 3.40 GHz
1GPU milliseconds on GTX1060

3. Light-Car Detection
The Light-Head R-CNN can meet real-time requirements on the GPU of computer, but its
inference time on the CPU or GPU of mobile device is long so it is impossible to run in
real-time. Consequently, we have to improve the Light-Head R-CNN network to make it run
faster. To run the neural network on mobile devices, we need to reduce the storage and
computation costs of neural network. Generally, there are two directions for decreasing
computation costs and the number of parameters: the first is to use a network module with less
parameters; the second is to prune the trained network and then retraining. In this paper, we
use both two methods to reduce the number of network parameters. In section 3, we use
bottleneck module to build the detection network. In section 4, we prune and retrain the trained
detection network.

3.1 Thin feature maps
For a standard convolution, the structure is shown in Fig. 3(A). Its cost is

 out inw h C k k C⋅ ⋅ ⋅ ⋅ ⋅ (1)
Its parameter size is

 out ink k C C⋅ ⋅ ⋅ (2)
Where w, h and outC are the width, height, the number of output channels of output feature
map respectively, k is the size of convolution kernel, inC is the number of channels of input
feature map.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 617

In the Light-Head R-CNN, the thin feature maps structure is shown in Fig. 3(B). It is called
large separable convolution. In this structure, the size of input tensor is inw h C× × , the size of
output tensor is outw h C× × , so the structure have the computational cost of

 2 2mid in out midw h C k C w h C k C⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ (3)
Its parameter size is

 2 2mid out in midk C C k C C⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ (4)
Where midC is the output channels of middle layer in large separable convolution module.

In this paper, we use bottleneck instead of large separable convolution, whose structure is
shown in Fig. 3(C). It has the computational cost of

 dmid in mid ut miow h C C w h C k k w h C C⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ (5)
Its parameter size is

 in mid mid mid mid outC C k k C C C C⋅ + ⋅ ⋅ ⋅ + ⋅ (6)

Fig. 3. Overview of three different structures. Dconvolution represents depthwise convolution.

We let k be 3, outC , inC and midC be 64, 512 and 64 respectively. In order to reduce the loss

of information, we removed the relu layer behind the depthwise convolution layer. Compared
to the large separable convolution and the standard convolution, the bottleneck dramatically
reduces both parameters and computational costs as shown in Table 3. We also compare mAP
between the large separable convolution and the bottleneck, and the results are shown in Table
4. The bottleneck is a more efficient model, but its accuracy is slightly low.

618 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

Table 3. Comparison of the parameters and the computational costs of three different structures with w
be 8 and h be 30 on NEXAR2 validation set.

Method Params Mult-Adds
Standard convolution 0.29M1 70.8M

Large separable convolution 0.22M 53.1M
Bottleneck 0.07M 9.0M

 1 M represents million

Table 4. Performance comparison of large separable convolution and bottleneck on NEXAR2
validation set.

Method mAP
Large separable convolution 62.2

Bottleneck 62.1

3.2 RPN
Since there are fewer classes in the Nexar2 dataset and the features are easier to extract, we
change the RPN convolution channel from 256 to 128 channels, whose results are shown in
Table 5. The accuracy has increased slightly, and we speculate that this is because we double
the initial learning rate for training.

Table 5. The modified RPN performance has improved. The performance is evaluated on NEXAR2
validation set.

RPN mAP
256 62.1
128 63.2

We named the modified network Light-Car Detection. In Table 6, we compare Light-Car

Detection with the original network. The results show the performance is better and the
calculation speed is faster.

Table 6. Performance comparison of Light-Head R-CNN and Light-Car Detection on NEXAR2
validation set.

Model

Backbone

Test Size
short/max

edge

Speed(ms)1

mAP

Light-Head RCNN MobileNet 300/300 501 62.1
Light-Car Detection MobileNet 300/300 276 63.2

Light-Head RCNN MobileNet 300/300 36.2(GPU) 62.1
Light-Car Detection MobileNet 300/300 17(GPU) 63.2

1 Speed is the time required to process an image.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 619

4. Pruning filters
Due to the limited computational ability and insufficient power resources of mobile devices,
we need to prune filter of Light-Car Detection. There are many methods for pruning filters,
one is based on data [36], and another is based on the amplitude of filters, such as [37, 38]. In
this paper, we use L1-norm to select unimportant filters and physically prune them. Light-Car
Detection has three different convolutions, standard convolution, depthwise convolution, and
pointwise convolution. In comparison, depthwise convolution is an efficient one, so we only
prune filters of standard convolution and pointwise convolution. We divide the procedure of
pruning into four steps: First, we calculate the L1-norm of filters on each layer. In each layer,
we compute the ratios of the L1-norm of each filter and the maximum of the L1-norm in this
layer. After that, we count the proportion of the filter whose L1-norm ratio is less than a given
value, and the result is shown in Fig. 4. Second, we prune several filters with small L1-norm
and their corresponding feature maps. The kernels on the next convolutional layer and
parameters in the next batch-normalization layer corresponding to the pruned feature maps are
removed. From Fig. 4, we can find that the L1-norm of 10% convolution kernels is very low
on the conv1 and conv2_1 /dw layers, so we remove these kernels. Third, we fine-tune
Light-Car Detection using 10k mini-batches with 0.0001 learning rate on nexar2 dataset. In
the process of pruning filters, we find conv1 and conv2* stages are more sensitive than conv3*,
conv4* conv5* stages, where conv2* represents conv2_1, conv2_2, so it is with conv3*,
conv4* and conv5*. After multiple pruning, the accuracy and running times of Light-Car
Detection are shown in Table 7. It is worth noting that after pruning, Light-Car Detection is
more efficient with only slightly accuracy loss.

Fig. 4. Sorting filters by ratios for each layer of Light-Car Detection on nexar2. The y-axis is the given
value. The x-axis is the proportion of the filter whose L1-norm ratio is less than a given value.

620 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

Table 7. The number of parameters, accuracy and running time after pruning filters. The performance is
evaluated on NEXAR2 validation set.

Model

Backbone
Test Size
short/max

edge

Speed(ms)

mAP

Params(M)1

Light-Head RCNN MobileNet 300/300 501 62.1 13.3
Light-Car

Detection F2
MobileNet 300/300 200 63.2 13.0

Light-Car
Detection L3

MobileNet 300/300 183 60.0 7.1

Light-Car
Detection L3

MobileNet 300/300 10.9(GPU) 60.0 7.1

1 Number of million bytes occupied by the network.
2 F represents the first time pruning network.
3 L represents the last time pruning network.

5. Stability of detection
The current evaluation criteria for object detection performance depends mainly on the IOU,
but stability is also an essential factor to consider in our mission. If the center and scale of the
detection bounding box of the detected target object are erratic, the distance between the
current vehicle and the vehicle ahead we calculated will be unstable and not accurate enough.
Therefore, ensuring a certain stability is necessary for reliable results. In order to reduce the
jitter of the detection bounding boxes and ensure the real-time processing, we use the
following two methods to improve the stability and evaluate the performance using method
proposed by Zhang et al. [32].

5.1 Using weighted NMS to improve the detection stability
In the object detection methods, after scoring each proposal box according to the degree of
coincidence, the NMS is generally used to suppress the redundant detection bounding box.
The NMS selects the highest scored bounding box and suppresses the bounding box where the
IOU value is higher than the set threshold. Admittedly, these suppressed borders also contain
some useful information, so suppressing them can result in the loss of valid information. In
this paper, we use weighted NMS [33] instead of NMS. In weighted NMS, the target bounding
box coordinates are refined by all candidate bounding boxes. By using this method, the mAP
and stability of object detection can be improved.

5.2 Using tracking to improve the detection stability
In video detection, bounding box jitter is unavoidable. We use the Median Flow (MF) [34], a
short-term and efficient tracking method to track the bounding boxes. In the specific
implementation process, we only track the bounding box with a score higher than 0.8. When
the MF tracker reports reliable tracking bounding box, we obtain a target bounding box with a
high IOU value, and then average the two bounding boxes to optimize the result.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 621

6. Calculating vehicle distance
A portion of the road in front of the vehicle can be considered to be on the ground plane such
that there is a homography transformation between the image and the ground [35]. The
formula is

P H p= ⋅ (7)
Where p represents the point in the image, and P the point on the ground. The

homography transformation H can be calculated by using 4 markers on the ground as shown in
Fig. 5. We setup the ground coordinates as the x-axis coincide with the front of host vehicle,
and the y-axis the moving direction. If it is assumed that the lower edge of the detected object's
bounding box coincides with the ground, then any point p on the lower edge can be used to
calculate the distance between the camera and the vehicle ahead. We use the center point of the
lower edge of bounding box.

Fig. 5. The calculation method of homography transformation between the flat ground plane and the
image, p is the center point of the lower edge of bounding box, so the distance is the y-coordinate

of P .

7. Experiments
In this section, we first evaluate the accuracy and inference time of Light-Car Detection using
the nexar2 dataset on PC. Aside from that, we evaluate the effect of weighted NMS and object
tracking stability. After that, we use the mobile optimization library MACE to deploy
Light-Car Detection to the smart phone and measure its inference time. Finally, we count the
errors of our method in calculating the vehicle distance, and compare with methods using
monocular camera.

7.1 Testing on PC
We test the runtimes on CPU and GPU under the condition of Ubuntu16.04 operating system,
Inter i5-7500 CPU, 8G memory and GTX1060 GPU training network. The accuracy and
inference time are shown in Table 7. Some detection results are given in Fig. 6 to quantitative
analysis the performance of proposed network.

622 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

Fig. 6. Some examples of Light-Car Detection on the KITTI dataset.

7.2 Stability analysis
We measure object stability on KITTI object tracking dataset. In this dataset, the ground-truth
3D box surrounds the entire object in 3D space, but what we favored is the 2D bounding box of
rear of the vehicle. We use the calibrated camera to project the 3D coordinates of the vehicle's
4 tail points to the image, and then we create the minimum bounding rectangle with these
points as the real ground box. As shown in Fig. 7, the blue box is the 3D box of the car. The
stability of the detection is measured by the scale and ratio of the bounding box, and the
difference of positions of the center point [32]. The smaller the resulting value, the higher the
stability of the test. We can find it in Fig. 8a and Fig. 8b that the weighted NMS and tracking
can ensure the stability of the bounding box to a certain extent with keeping the stability of the
center positions.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 623

Fig. 7. The 3D car is surrounded by a 3D blue box, 4 tail points on the rear of the 3D box are projected
to the image to create ground truth box. Here, we use the coordinate system defined in KITTI dataset.

Fig. 8(a). Scale and ratio Error with respect to the

overlap threshold1
Fig. 8(b). Center Position Error with respect to the

overlap threshold1

1The overlap is the IOU between predicted bounding box and ground truth box.

7.3 Deploying on mobile platforms
Mobile applications are benefited from the development of the deep learning, but mobile
hardware (e.g. GPU and memory size) is limited compared to the desktop. After comparing
several open source mobile deep learning frameworks, we chose MACE because it requires
less memory and less time when inferring the trained model. To evaluate mobile-based
inference, we use a Samsung Galaxy S7 mobile phone under Android 6.0 to run our trained
model. The inference time is shown in Table 8, which satisfies real-time requirements on
Adreno 530 GPU.

Table 8. Inference time on Samsung Galaxy S7.
SmartPhone Device Model Image Size Time(ms)

SamSung Galaxy S7 CPU Snapdragon 820 300 300× 215
SamSung Galaxy S7 GPU Adreno 530 300 300× 78.4

624 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

7.4 Car distance evaluation on the KITTI dataset
Recently, Geiger et al. [4] presented DPM based on conventional computer vision and Chen et
al. [5] presented DeepDriving based on the convolutional neural network end-to-end distance
prediction. Both of them achieve superior performance than previous methods. In this paper,
we make a comparison with the two methods on the KITTI dataset.

The KITTI 3D object detection dataset contains a training set of 7480 images and a test set
of 7480 images. In training set, all images emerge with official 3D labels for the positions of
nearby cars, so we can easily extract the distance to other cars in the image. For each image,
we define a 2D coordinate system on the zero height plane. The origin of the coordinate
system is the center of the camera, the positive direction of the y-axis is directly in front of the
direction of travel of the vehicle, and the direction of the x-axis is the right side perpendicular
to the direction of travel. In the picture of the dataset, each picture contains multiple vehicles
but only the most recent ones (one is on the left of the host car, one on its right, one on its
ahead) in the DeepDriving method are selected for error estimation. We are consistent with
this process. We divide the area in front of the current car into three parts according to the
value range of the x coordinate: when [1.6,1.6]x ∈ − , it is regarded as the area directly in
front; when [12, 1.6]x ∈ − − , it is regarded as the left area; When [1.6,12]x ∈ , it is regarded
as the right area; For our detection method, we may detect partial cars which only partially
appear on the left lower corner or right lower corner. These cars are unlikely to locate at the
ahead of host car and calculating the distance of these cars is inaccurate. Simultaneously, in
DeepDriving and DPM, they do not count errors of these partial cars, so we also only count
errors when the closest cars fully appear in the image. In DeepDriving and DPM, they count
errors when cars show up within 50 meters ahead, in here, we are consistent with DeepDriving
and DPM. We use the metrics proposed by Chen et al. [5] to evaluate errors, calculating The
Mean Absolute Error (MAE) for the y and x coordinates and the Euclidean distance d
between the estimation and the ground truth of the car position. The results are shown in Table
9. We give two results of our approaches, one is without WNMS and tracking the other has
WNMS and tracking. Compared with DeepDriving and DPM, we obtain superior
performance.

Table 9. Mean Absolute Error (in meters) on KITTI 3D object detection dataset.
Parameter x y d

DeepDriving 1.097 4.332 4.669
DPM+Proj 1.214 5 5.331

Our approach
(w/o WNMS+Tracking)

0.087 1.555 1.562

Our approach 0.094 1.248 1.258

When the vehicles ahead are far away from host car, namely as the distances increase, the
absolute value of the difference between the obtained distance and the true value becomes
larger as well. The result is shown in Fig. 9. It is noticed that even with a distance of 50 meters
from the front car, our error is only about 4 meters. In practical applications, the error is
acceptable.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 625

Fig. 9. The difference between the obtained distance and the true value at different car distances.

7.5 Car distance evaluation on the smart phone

To evaluate the performance of our approach in real-world, we also evaluate our approach
using smartphone. Firstly, we collected 200 images, which contain 20 scenes, each scene
contains 10 images. For each scene, the homography matrix was pre-computed. For each
image, we used a meter ruler to measure the distance between the vehicle and the calibration
board. Some examples are shown in Fig. 10. For quantitative evaluation, we use Mean
Absolute Error to reflect the performance of our method. The results are shown in Table 10.
The result shows that our method also can achieve good performance in the real-word scene.

626 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

Fig. 10. Some examples of our method on smart phone.

Table 10. The value of Mean Absolute Error (in meters) in different distance.

Distance MAE
0<d<10 0.268

10<=d<20 1.457
20<=d<50 1.842

7.6 Compared with monocular depth estimation
Estimating the pixel-wise depth of scenes from RGB images has triggered wide research

recently in the computer vision community. There have been many methods in the field of
monocular depth estimation, which all use convolutional neural networks (CNNs) to
end-to-end estimate the depth of scenes. Naturally, the methods of monocular depth estimation
also can estimate the distance of ahead vehicle. In this paper, we compare our method with the
state-of-art methods [41-44] of monocular depth estimation. In order to make the results fair
and convincing, we all use the central point of lower edge of predicted bounding box to
calculate the quantitative metrics in monocular depth estimation. Aside from that, we use 6
metrics [40] which are widely used in the field of monocular depth estimation to evaluate the
performance. These metrics are shown as follow:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 627

Threshold accuracy (iδ): % of pd s.t
*

*
2 3max(,) = , 1.25, 1.25 , 1.25p p

pp

d d
dd

thr thrδ < = .

 Average relative error (rel):
*

1 p p

p

d dn
pn d

−
∑ .

 Average squared relative error (sq. rel):
2*

1 p p

p

d dn
pn d

−
∑ .

 Root mean squared error (rms): * 21 ()n
p p pn d d∑ − .

 Average error (log10): *1
10 10log () log ()n

p p pn d d∑ − .

Where pd is a pixel in the ground truth depth image, *
pd is a pixel in the predicted depth

image, and n is the number of valid pixels.
The results are provided in Table 11. We are able to achieve more accurate distance of

ahead vehicle than monocular depth estimation.

Table 11. Comparison between our method and the method using monocular depth estimation on the
KITTI dataset. The best results are bolded.

Method
1δ 2δ 3δ Rel sq. rel rms log10

DORN [41] 0.959 0.994 0.9991 0.060 0.302 3.105 0.091
Kuznietsov et al. [42] 0.924 0.982 0.996 0.085 0.600 4.226 0.127
Monodepth2 [43] 0.901 0.963 0.980 0.107 1.049 5.050 0.191
MonoResMatch [44] 0.909 0.959 0.981 0.096 1.233 6.191 0.171
Ours 0.995 0.998 12 0.047 0.172 2.798 0.020
 Higher is better Lower is better

1The more accurate numeric is 0.99883
2The more accurate numeric is 0.99992

8. Conclusion

In this paper, we present a Light-Car Detection method to detect distance of the vehicles ahead.
We combine the deep learning with traditional computer vision, using WNMS and MF
tracking to improve the detection stability and accuracy. We refined thin feature maps and
RPN subnetwork. The pruned network achieves 13FPS on Samsung Galaxy S7 mobile phone.
We compare with two methods which is used in predicting the vehicle distance and four
monocular depth estimation methods which predict the depth of scenes end-to-end.
Experimental results show that our approach obtains superior performance.

References
[1] H. Kong, J. Y. Audibert, and J. Pone, “Vanishing point detection for road detection,” in Proc. of

2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 96-103, 2009.
Article (CrossRef Link).

[2] C. H. Chen, T. Y. Chen, D. Y. Huang, and K. W. Feng, “Front vehicle detection and distance
estimation using single-lens video camera,” in Proc. of 2015 Third International Conference on
Robot, Vision and Signal Processing (RVSP), pp. 14-17, 2015. Article (CrossRef Link).

[3] D. Y. Huang, C. H. Chen, T. Y. Chen, W. C. Hu, and K. W. Feng, “Vehicle detection and
inter-vehicle distance estimation using single-lens video camera on urban/suburb roads,” Journal

https://doi.org/10.1109/CVPR.2009.5206787
https://doi.org/10.1109/RVSP.2015.12

628 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

Visual Communication and Image Representation, vol. 46, pp. 250-259, 2017.
Article (CrossRef Link).

[4] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasum, “3d traffic scene understanding from
movable platforms,” IEEE transactions on pattern analysis and machine intelligence, vol. 36, no.
5, pp. 1012-1025, 2014. Article (CrossRef Link).

[5] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for direct
perception in autonomous driving,” in Proc. of the IEEE International Conference on Computer
Vision, pp. 2722-2730, 2015. Article (CrossRef Link).

[6] C. C. Tsai, Y. T. Lai, Y. F. Li, and J. G. Guo, “A vision radar system for car safety driving
applications,” in Proc. of 2017 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), pp. 1-4, 2017. Article (CrossRef Link).

[7] M. Chen, D. Zhao, J. Sun, and H. Peng, “Improving Localization Accuracy in Connected Vehicle
Networks Using Rao-Blackwellized Particle Filters: Theory, Simulations, and Experiments,”
IEEE Transactions on Intelligent Transportation Systems, vol.20, no.6, pp.2255-2266, 2019.
Article (CrossRef Link).

[8] N. Sasaki, S. Tomaru, and S. Nakamura, “Development of inter-vehicle distance measurement
system using camera-equipped portable device,” in Proc. of 2017 17th International Conference
on Control, Automation and Systems (ICCAS), pp. 994-997, 2017. Article (CrossRef Link).

[9] F. de Ponte Müller, “Survey on Ranging Sensors and Cooperative Techniques for Relative
Positioning of Vehicles,” Sensors, 17(2), 271, 2017. Article (CrossRef Link).

[10] K. Y. Park and S. Y. Hwang, “Robust Range Estimation with a Monocular Camera for
Vision-Based Forward Collision Warning System,” the Scientific World Journal, vol.2014, p.9,
2014. Article (CrossRef Link).

[11] A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” Advances in neural information processing systems, pp. 1097-1105, 2012.
Article (CrossRef Link).

[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A.
Rabinovich, “Going deeper with convolutions,” in Proc. of the IEEE conference on computer
vision and pattern recognition, pp. 1-9, 2015. Article (CrossRef Link).

[14] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in Proc. of the
IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
Article (CrossRef Link).

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[16] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, “Aggregated residual transformations for deep
neural network,” in Proc. of the IEEE conference on computer vision and pattern recognition, pp.
1492-1500, 2017. Article (CrossRef Link).

[17] J. Hu, L. Shen and G. Sun, “Squeeze-and-excitation networks,” in Proc. of the IEEE conference on
computer vision and pattern recognition, pp. 7132-7141, 2018. Article (CrossRef Link).

[18] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally and K. Keutzer, “SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size,” arXiv preprint
arXiv:1602.07360, 2016.

[19] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. C. Chen, “Inverted Residuals and Linear
Bottlenecks: Mobile Networks for Classification, Detection and Segmentation,” in Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510-4520, 2018.
Article (CrossRef Link).

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, “Ssd: Single shot
multibox detector,” in Proc. of European conference on computer vision, pp. 21-37, 2016.
Article (CrossRef Link).

[21] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proc. of the IEEE conference
on computer vision and pattern recognition, pp. 7263-7271, 2017. Article (CrossRef Link).

https://doi.org/10.1016/j.jvcir.2017.04.006
https://doi.org/10.1109/TPAMI.2013.185
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/VLSI-DAT.2017.7939670
https://ieeexplore_ieee.gg363.site/abstract/document/8463586/
https://doi.org/10.23919/ICCAS.2017.8204367
https://doi.org/10.3390/s17020271
https://doi.org/10.1155/2014/923632
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networ
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2017.690

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 2, February 2020 629

[22] T. Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, “Focal loss for dense object detection,” in
Proc. of the IEEE international conference on computer vision, pp. 2980-2988, 2017.
Article (CrossRef Link).

[23] Redmon J, Farhadi A. “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767,
2018.

[24] J. Dai, Y. Li, K. He and J. Sun, “R-fcn: Object detection via region-based fully convolutional
networks,” Advances in neural information processing systems, pp. 379-387, 2016.
Article (CrossRef Link).

[25] Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng and J. Sun, “Light-Head R-CNN: In Defense of
Two-Stage Object Detector,” arXiv preprint arXiv:1711.07264, 2017.

[26] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H.
Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[27] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C. L. Zitnick,
“Microsoft coco: Common objects in context,” in Proc. of European conference on computer
vision, pp. 740-755, 2014. Article (CrossRef Link).

[28] S. Ren, K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time object detection with
region proposal networks,” Advances in neural information processing systems, pp. 91-99, 2015.
Article (CrossRef Link).

[29] A. Shrivastava, A. Gupta and R. Girshick, “Training region-based object detectors with online
hard example mining,” in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 761-769, 2016. Article (CrossRef Link).

[30] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel,
“Backpropagation applied to handwritten zip code recognition,” Neural computation, vol. 1, no. 4,
pp. 541-551, 1989. Article (CrossRef Link).

[31] N. Bodla, B. Singh, R. Chellappa and L. S. Davis, “Soft-NMS--Improving Object Detection With
One Line of Code,” in Proc. of the IEEE International Conference on Computer Vision, pp.
5561-5569, 2017. Article (CrossRef Link).

[32] H. Zhang and N. Wang, “On The Stability of Video Detection and Tracking,” arXiv preprint
arXiv:1611.06467, 2016.

[33] S. Gidaris and N. Komodakis, “Object detection via a multi-region and semantic
segmentation-aware cnn model,” in Proc. of the IEEE International Conference on Computer
Vision, pp. 1134-1142, 2015. Article (CrossRef Link).

[34] Z. Kalal, K. Mikolajczyk and J. Matas, “Forward-backward error: Automatic detection of tracking
failures,” in Proc. of 2010 20th International Conference on Pattern Recognition, pp. 2756-2759,
2010. Article (CrossRef Link).

[35] D.A. Forsyth and J. Ponce, “Computer Vision: A Modern Approach,” Pearson Education Inc.
2003.

[36] Yihui He, X. Zhang, J. Sun, “Channel pruning for accelerating very deep neural networks,” in Proc.
of The IEEE International Conference on Computer Vision (ICCV), pp. 1389-1397, 2017.
Article (CrossRef Link).

[37] H. Li, A. Kadav, I. Durdanovic, H. Samet and H. P. Graf, “Pruning filters for efficient convnets,”
arXiv preprint arXiv:1608.08710, 2016.

[38] S. Han, H. Mao, W. J. Dally, “Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[39] Y. Cuiping, “Research on Safe Distance between Vehicles for Freeway Anti-collision System,”
Process Automation Instrumentation, vol. 9, p. 005, 2008. Article (CrossRef Link).

[40] D. Eigen, C. Puhrsch, and R. Fergus. “Depth map prediction from a single image using a
multi-scale deep network,” Advances in neural information processing systems, pp. 2366-2374,
2014. Article (CrossRef Link).

[41] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao. “Deep ordinal regression network for
monocular depth estimation,” in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2002-2011, 2018. Article (CrossRef Link).

https://doi.org/10.1109/ICCV.2017.324
http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks
https://doi.org/10.1007/978-3-319-10602-1_48
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks
https://doi.org/10.1109/CVPR.2016.89
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/ICCV.2017.593
https://doi.org/10.1109/ICCV.2015.135
https://doi.org/10.1109/ICPR.2010.675
http://openaccess.thecvf.com/content_iccv_2017/html/He_Channel_Pruning_for_ICCV_2017_paper.html
http://en.cnki.com.cn/Article_en/CJFDTotal-ZDYB200809005.htm
http://papers.nips.cc/paper/5539-depth-map-prediction-from-a-single-image-using-a-multi-scale-deep-network
https://doi.org/10.1109/CVPR.2018.00214

630 Ma et al.: Fast, Accurate Vehicle Detection and Distance Estimation

[42] Y. Kuznietsov, J. Stuckler, and B. Leibe. “Semi-supervised deep learning for monocular depth
map prediction,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6647-6655, 2017. Article (CrossRef Link).

[43] C. Godard. O. M. Aodha, and G. Brostow. “Digging into self-supervised monocular depth
estimation,” arXiv preprint arXiv:1806.01260. 2018.

[44] F. Tosi, F. Aleotti, M. Poggi, and S. Mattoccia. “Learning monocular depth estimation infusing
traditional stereo knowledge,” in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9799-9809, 2019. Article (CrossRef Link).

Guang Jiang is an associate professor in the School of Telecommunications
Engineering at Xidian University, Xian, China. Currently, his main research areas include
image processing and computer vision. His main research goals are to develop approaches
to analyze, understand and code the images or videos of real world objects and scenes
based on vision geometry.

QuanMeng Ma is a master student in the School of Telecommunications Engineering
at Xidian University, Xi’an, China. His research interests involve Image Processing and
Computer Vision.

DianZhi Lai is a master student in the School of Telecommunications Engineering at
Xidian University, Xi’an, China. Her research interests involve Image Processing and
Computer Vision.

Hua Cui received her B.S. degree in Mathematics from Henan Normal University,
Xinxiang, China, in 1999. She received her M.S. and Ph.D. degrees in Applied
Mathematics from Xidian University, Xi’an, China, in 2005 and in 2008, respectively.
She has been on the faculty of the School of Information Engineering, Chang’an
University, Xi’an, China, since 2008. Her research interests include neural network
applications, and modeling and predistortion for nonlinear power amplifiers.

Huansheng Song professor with the School of Information Engineering, Chang’an
University, Xi’an, China. His current research interests include digital image processing
and wireless communication systems.

https://doi.org/10.1109/CVPR.2017.238
http://openaccess.thecvf.com/content_CVPR_2019/html/Tosi_Learning_Monocular_Depth_Estimation_Infusing_Traditional_Stereo_Knowledge_CVPR_2019_paper.html

