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[Abstract]

Steel production requires high-quality surfaces with minimal defects. Therefore, the detection 

algorithms for the surface defects of steel strip should have good generalization performance. To meet 

the growing demand for high-quality products, the use of intelligent visual inspection systems is 

becoming essential in production lines. In this paper, we proposed a ShuffleDefectNet defect detection 

system based on deep learning. The proposed defect detection system exceeds state-of-the-art 

performance for defect detection on the Northeastern University (NEU) dataset obtaining a mean 

average accuracy of 99.75%. We train the best performing detection with different amounts of training 

data and observe the performance of detection. We notice that accuracy and speed improve significantly 

when use the overall architecture of ShuffleDefectNet.
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[요   약]

일반적으로 품질 관리는 많은 제조 공정, 특히 주조 또는 용접과 관련된 공정의 기본 구성 요소

가 된다. 그러나 사람이 일일이 수동으로 품질 관리 절차를 하는 것은 종종 시간이 걸리고 오류가 

발생하기 쉽다. 최근 고품질 제품에 대한 요구를 만족시키기 위해 지능형 육안 검사 시스템의 사용

이 생산 라인에서 필수적이 되고 있다. 본 논문에서는 이를 위해 딥 러닝 기반의 ShuffleDefectNet 

결함 감지 시스템을 제안하고자 한다. 제안된 결함 검출 시스템은 NEU 데이터 세트의 결함 검출에 

대한 여러 최신 성능들보다 높은 평균 정확도 99.75% 정도를 얻는다. 이 논문에서 여러 다른 트레

이닝 데이터로부터 최상의 성능을 탐지하고 탐지 성능을 관찰하였다. 그 결과 ShuffleDefectNet의 

전체 아키텍처를 사용할 때 정확성과 속도가 크게 향상됨을 알 수 있었다.

▸주제어: 결함탐지, 딥러닝, 셔플넷, 라이트웨이 모듈
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I. Introduction

In the steel industry, the detect of steel surface 

defect plays an important role in finding the cause 

of defects in the manufacturing process. It is 

possible to eliminate the defects by utilizing the 

cause of defects of the product in real-time for the 

manufacturing process. As a result, mass defect in 

the continuous manufacturing process can be 

drastically reduced. Besides, process optimization 

can be performed by analyzing the pattern of 

defects according to the operating conditions.

Processes such as casting and welding can 

introduce defects in the product which are 

detrimental to the final product quality [1]. 

Common casting defects include air holes, foreign 

particle inclusions, shrinkage cavities, cracks, 

wrinkles, and casting fins [2]. Early detection of 

these defects can allow faulty products to be 

identified early in the manufacturing process, 

leading to time and cost savings [3]. Automated 

quality control can be used to facilitate consistent 

and cost-effective inspection. The primary drivers 

for automated inspection systems include faster 

inspection rates, higher quality demands, and the 

need for more quantitative product evaluation that 

is not hampered by the effects of human fatigue.

Many factors make real-time detection of steel 

strip surface defects particularly difficult, such as 

the high-speed production line, diversity and large 

scale changes of defects, random distribution and 

non-defective interferences (oil stains and dust on 

the surface of steel strips). Using ShuffleDefectNet, 

we can automatically extract multi-scale features of 

steel strip surface defects with good generalization 

and high accuracy by using a general-purpose 

learning procedure [4]. Using a trained network, 

defect regions can be detected in milliseconds. 

Therefore, SheffleNet v2 [5] can provide an 

accurate, real-time detection method for surface 

defects in steel strip product quality of steel strips.

For automatic metallic surface defect detection, 

we are using notification ShuffleNet V2 module. 

Because ShuffleNet V2 [5] is faster than the other 

networks, especially on GPU. For example, at 

500MFLOPs ShuffleNet V2 [5] is 58% faster than 

MobileNet v2 [6], 63% faster than ShuffleNet V1 [7] 

and 25% faster than Xception [8]. On ARM, the 

speeds of ShuffleNet V1 [7], Xception [8] and 

ShuffleNet V2 [6] are comparable; however, 

MobileNet V2 [6] is much slower, especially on 

smaller FLOPs, because MobileNet v2 [6] has higher 

MAC, which is significant on mobile devices. Our 

method called ShuffleDefect and architecture is 

modification of ShuffleNet V2. For reaching high 

accuracy and speed we change 1 × 1 GConv to 1 × 

1 Conv and 3 × 3 AVG Pool to 3 × 3 DWConv.  

The rest of the paper is organized as follows. 

Next is the Related works section, we review some 

existing works and describe a dataset. CNN 

architecture description and show performed result 

from the experiment part in Section 3. Our 

conclusions are described in Section 4.

II. Related Works

1.1 Overview

Recent progress in the field of neural networks was 

triggered by several achievements. Deep learning 

architectures were enabled by increasing computing 

power and provide more and higher levels of 

representation [9]. Data augmentation, e.g. addition 

of artificial training data derived from the existing 

data through distortions, proved to be a powerful tool 

to avoid overfitting [10]. Committee methods can 

reduce the error rate by a combination of several 

networks, especially when the individual predictions 

are uncorrelated [11]. Finally, unsupervised methods 

for learning features and representations became 

very popular and solved problems with purely 

supervised training, e.g. dependence on random 

initialization, slow convergence, etc. [12] 

Recently Masci et al. introduced Max-Pooling 

CNN model approach for supervised steel defect 

classification [13]. On a different approach, Soukup 
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and Huber-M¨ork trained a CNN with stereo 

imaging to detect steel surface defects [14]. But the 

stereo acquisition method limits the application and 

cause the inference speed of this approach to be 

slow. Ke et al. tried using CNN-based 

defect-recognition in banknote images [15]. Even 

though the CNN performs better than traditional 

methods in results, study of the single type of 

(circular) defect, limits the usage in similar 

problems. Faghih-Roohi et al. used deep learning 

approaches with multiple CNN models to detect and 

classify rail surface defects and achieved 92% 

accuracy with 5 classes of defects [16]. Park et al. 

had a more holistic approach to surface inspection 

systems with their CNN-based system for surface 

defect inspection [16]. Park et al. show that even 

though CNN-based classifiers perform better than 

traditional methods with 92% accuracy, the 

inference time of 217ms is inferior to traditional 

methods [16]. Stricker Weimer et al. used multiple 

CNN models to automate the feature extraction in 

inspection systems [17]. Even though results show 

remarkable accuracy on textured images, they only 

used the simple circular and linear type of defects 

but not complex defect types.

Currently, the neural network architecture 

design is mostly guided by the indirect metric of 

computation complexity, i.e., FLOPs. However, the 

direct metric, e.g., speed, also depends on the 

other factors such as memory access cost and 

platform characteristics. Thus, this work proposes 

to evaluate the direct metric on the target 

platform, beyond only considering FLOPs. Based on 

a series of controlled experiments, this work 

derives several practical guidelines for efficient 

network design. Accordingly, a new architecture is 

presented, called ShuffleNet V2. Comprehensive 

ablation experiments verify that our model is 

state-of-the-art in terms of speed and accuracy 

tradeoff respect to these models.

1.2 Dataset

NEU surface defect is a defect classification 

dataset was opened seven years ago [18]. There are 

six types of defects from hot-rolled steel plates, 

including crazing, inclusion, patches, pitted surface, 

rolled-in scales, and scratches. The database 

includes 1800 grayscale imagesEach class has 300 

images, but it does not mean that an image consists 

of a single defect. Examples of defect images are 

shown in Figure 1. To perform defect detection 

tasks, we provide annotations saved as XML files. 

With them, the classification dataset is upgraded to 

a detection dataset. The annotation marks the class 

and bounding box of each defect appearing in an 

image. Each bounding box is regarded as a ground 

truth box, which is represented by its top left and 

bottom right coordinates. There are nearly 5000 

ground-truth boxes in total. For simplicity, we call 

the original dataset NEU-CLS and the 

complemented dataset NEU-DET.

(a)                (b)                (c)

(d)                (e)                (f)

Fig. 1. Examples of the NEU defect dataset. Each column 

represents a type of defect, and the defect areas are labeled 

by the red bounding boxes. (a) rolled-in scale; (b) pitted 

surface; (c) patches; (d) crazing; (e) scratches; (f) inclusion.

III. The Proposed Scheme

3.1 Light Weight module Designs 

A lightweight network structure is designed for 

ShuffleDefectNet with NEU surface defect detection. 

The network structure, which enhances the ability 

of speed and improve detection accuracy.
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3.1.1 Point-wise Convolution

The point-wise convolution is the standard 1×1 

convolution. It is used to aggregate information on 

different channels. The standard convolution 

convolves the input feature map both in the 

spatial-wise and the channel-wise dimensions. The 

depth-wise convolution could convolve the input 

feature map in the spatial-wise dimension, but it 

loses the information exchange among the different 

channels. Therefore, depth-wise convolutions and 

point-wise convolutions are complementary to each 

other. By using convolution factorization has a 

effects, we factorize each standard convolution 

layer of the baseline detection network into a 

depth-wise convolution layer and a point-wise 

convolution layer. The convolution factorization 

has two advantages over directly adopting standard 

convolutions. Firstly, the parameters of the 

network become much less. We suppose the input 

channels is Nin and the output channels are Not, 

the regular 3×3 convolution has 3×3×Nin×Nout 

parameters. After convolution factorization, the 

parameters become 3×3×Nin+1×1×Nin×Nout 

parameters. Secondly, the computation complexity 

is largely reduced. We use FLOPS as the index of 

computation complexity. We suppose the above 

convolution layer’s input and output feature maps’ 

spatial resolution are both H∗W. The FLOPS of 

regulation convolution would be 

H×W×3×3×Nin×Nout, while after convolution 

factorization, the FLOPS would be 

H×W×3×3×Nin+1×1×Nin×Nout × H × W. Since the 

convolution factorization could reduce much 

computation costs, we adopt it in all convolutional 

layers of the face detection network except conv1, 

including the backbone and the predicting layers. 

The regular convolutions with the same number of 

input and output channels can easily be factorized 

into depth-wise and point-wise convolutions. For 

the convolution which has a different number of 

channels between its input and output feature 

maps, the channel number transformation is 

accomplished at the point-wise convolutions.

Fig. 2. Point-wise Convolution

3.1.2 Depth-wise convolution

In this section, we have described the depth-wise 

convolution. Depth-wise separable convolution 

layer has been proposed as an efficient alternative 

to the standard convolution operation. By replacing 

a standard 3-D convolution with a 2-D depth-wise 

convolution followed by a 1-D point-wise 

convolution, an efficient class of NN called as 

MobileNets. ShuffleNets utilize depth-wise 

convolutions on shuffled channels along with 

groupwise 1x1 convolutions to improve the 

accuracy with compact models. MobileNets V2 

further improved the efficiency by adding shortcut 

connections, which help in convergence in deep 

networks. Overall, there have been many efficient 

neural network architectures proposed, which can 

be leveraged when developing a NN model specific 

for our hardware budget

3.1.3. GConv group convolution

Group convolution Figure 4 is a special case of a 

sparsely connected convolution. It was first used in 

the AlexNet [20] architecture and has more recently 

been popularized by its successful application in 

ResNeXt [21].

Fig. 3. Depth-wise convolution

Standard convolutional layers generate O output 

feature maps by applying convolutional filters 

overall I input feature maps, leading to a 

computational cost of I × O. In comparison, group 

convolution reduces this computational cost by 
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partitioning the input features into G mutually 

exclusive groups and each group produces its 

outputs―reducing the computational cost by a 

factor G to I×O/G. ShuffleNet V2 suggests that the 

group number should be carefully chosen based on 

the target platform and task. It is unwise to use a 

large group number simply because this may 

enable using more channels because the benet of 

accuracy increase can easily be outweighed by the 

rapidly increasing computational cost. Channel 

shuffle operation makes it possible to build more 

powerful structures with multiple group 

convolutional layers. In the subsection, we will 

introduce an efficient network unit with channel 

shuffle and group convolutions.

Fig. 4. Channel shuffle with two stacked group convolutions. 

GConv stands for group convolution. (a) Two stacked 

convolution layers with the same number of groups. Each 

output channel only relates to the input channels within the 

group. No cross-talk; (b) input and output channels are fully 

related when GConv2 takes data from different groups after 

GConv1; (c) an equivalent 

implementation to (b) using channel shuffle.

3.2. ShuffleDefectNet 

Taking advantage of the channel shuffle 

operation, we propose a novel ShuffleDefectNet unit 

specially designed for small networks. We start 

from the design principle of the bottleneck unit in 

Fig 5 (c). It is a residual block. In its residual 

branch, for the 3 × 3 layer, we apply a 

computational economical 3 × 3 depthwise 

convolution on the bottleneck feature map. Then, 

we replace the first 1 × 1 layer with pointwise 

group convolution followed by a channel shuffle 

operation, to form a ShuffleDefectNet unit, as 

shown in Fig 5 (d).

ShuffleDefectNet (Table 1) is not only efficient, 

but also accurate. There are two main reasons. 

First, the high efficiency in each building block 

enables using more feature channels and larger 

network capacity.

Fig. 5. Building blocks of our ShuffleDefectNet (c)(d).Old 

ShuffleNet V2 blocks (a)(b)

An extremely efficient convolutional neural 

network for mobile devices [19]. The main 

challenge for light-weight networks is that only a 

limited number of feature channels is affordable 

under a given computation budget (FLOPs). To 

increase the number of channels without 

significantly increasing FLOPs, two techniques are 

adopted in [19] pointwise group convolutions and 

bottleneck-like structures. A “channel shuffle” 

operation is then introduced to enable information 

communication between different groups of 

channels and improve accuracy. The building 

blocks are illustrated in Figure 4(a)(b).

Table 1. Overall architecture 200×200 image 

Resized to 192×192 of ShuffledefectNet with NEU 

dataset four different levels of complexities.
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3.3 Experiments

For experimental comparisons, we use the 

standard network ShuffleDefectNet. All models of 

networks were implemented using the TensorFlow 

framework and trained on a single NVIDIA GeForce 

GTX 1080 Ti GPUs, Intel(R) Core(TM) i7-8700K CPU 

@ 3.20GHz. In the experiments, 300 images are 

used for training and 27 images are for testing. 

As with many deep learning tasks, it takes a large 

amount of labeled data to train an accurate 

detection. We train the best performing classifiers 

with different amounts of training data and observe 

the performance of detection. We notice that 

accuracy and speed improve significantly when use 

the overall architecture of ShuffleDefectNet(Table 1). 

The proposed defect detection system exceeds the 

ResNet34 model from [22] in terms of accuracy and 

evaluation time. The improvement in accuracy is 

thought to be largely due to benefits arising from a 

joint prediction of bounding boxes and segmentation 

masks. Both systems take a similar amount of time 

to evaluate on the CPU, but the proposed system is 

faster than the ResNet34 system when evaluated on 

a GPU and we can see our network has best results 

than AECLBP[23], BYEC[24], OVERFEAT[25], 

Decaf[26], MVM-VGG[27]. As we know, stronger 

performance on defect classification should be 

positively correlated with stronger performance on 

defect detection. A good classification result is a 

prerequisite for subsequent defect detection 

experiments. As we know, stronger performance on 

defect classification should be positively correlated 

with stronger performance on defect detection. A 

good classification result is a prerequisite for 

subsequent defect detection experiments. There is an 

inherent tradeoff between speed and accuracy in 

most modern object detection networks systems 

based on the ShuffleDefectNet framework with NEU 

defect dataset. As shown in Table2, our architecture 

increases high accuracy. By the way, changing 1 × 

1 GConv to 1 × 1 Conv is reaching high speed. The 

proposed defect detection system exceeds the 

previous state-of-the-art performance on casting 

defect detection reaching an accuracy of 99.75% in 

Table2. The proposed architecture is easy to use and 

possible to apply to any standard metal surface defect 

detection with considering time and accuracy 

complexity by limiting the number of the blocks.

Model Accuracy%

BYEC 96.30

OVERFEAT 98.70

AECLBP 98.93

ResNet34 99.33

MVM-VGG 99.50

ShuffleNet v2 99.64

Decaf 99.70

SuffleDefectNet 99.75

Table 2. Detection results on NEU dataset

IV. Conclusions

In this paper, the defect detection network 

(ShuffleDefectNet), a defect inspection system for 

metal steel surfaces this system is the network that 

can obtain the specific category and detailed 

location of a defect by fusing the multilevel 

features. For defect detection tasks, our system 

can provide detailed for quality assessment 

systems, such as the quantity, category, 

complexity, and area of a defect. The proposed 

defect detection system exceeds state-of-the-art 

performance for defect detection on the 

Northeaster University (NEU) dataset obtaining a 

mean average accuracy of 99.75%. The defect 

detection system described in this work can detect 

casting and welding defects with very high 

accuracy. Future work could involve training the 

same network to detect defects in other materials 

such as wood or glass.

ACKNOWLEDGEMENT

This work was supported by NRF(project number 

is 2018R1D1A1A09084151) and the MSIT, Korea, 

under the ITRC support program(IITP-2020-2017-

0-01630).



Automatic Metallic Surface Defect Detection using ShuffleDefectNet   25

REFERENCES

[1] R. Rajkolhe and J. Khan, “Defects, causes and their remediesin 

casting process: A review,” vol. 2, no. 3, pp. 375–383. 

[2] X. Li, S. K. Tso, X.-P. Guan, and Q. Huang, “Improving automatic 

detection of defects in castings by applying wavelet technique,” 

vol. 53, no. 6, pp. 1927–1934. 

[3] S. Ghorai, A. Mukherjee, M. Gangadaran, and P. K. Dutta, 

“Automatic defect detection on hot-rolled flat steel products,” vol. 

62, no. 3, pp. 612–621.

[4] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. 

nature, 521(7553), 436.

[5] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, Jian Sun 

“ShuffleNet V2: Practical Guidelines for Efficient CNN 

Architecture Design” (Submitted on 30 Jul 2018)

[6] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: 

Inverted residuals and linear bottlenecks: Mobile networks for 

classification, detection, and segmentation. arXiv preprint 

arXiv:1801.04381 (2018)

[7] Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely 

efficient convolutional neural network for mobile devices. arXiv 

preprint arXiv:1707.01083 (2017)

[8] Chollet, F.: Xception: Deep learning with depthwise separable 

convolutions. arXiv preprint (2016)

[9] Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural 

networks for im-age classification. In: Proc. of Conference on 

Computer Vision and Pattern Recognition (CVPR), pp. 3642–3649 

(June 2012)

[10] Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning 

- a new frontier inartificial intelligence research. IEEE 

Computational Intelligence Magazine 5(4),13–18 (2010)

[11] Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for 

convolutional neural networks applied to visual document 

analysis. In: Proc. of International Conference on Document 

Analysis and Recognition (ICDAR), pp. 958–963 (2003)

[12] Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer 

networks in unsupervised feature learning. In: Proc. of 

International Conference on Artificial intelligence and statistics 

(AISTATS) (2011)

[13] Soukup, D., Huber-M�work, R.: Convolutional neural networks 

for steel surface defect detection from photometric stereo images. 

Advances in Visual Computing 8887 (2014) 668{677 3

[14] Ke, W., Huiqin, W., Yue, S., Li, M., Fengyan, Q.: Banknote 

Image Defect Recognition Method Based on Convolution Neural 

Network. International Journal of Security and Its Applications 

10(6) (2016) 269{280 3

[15] Faghih-Roohi, S., Hajizadeh, S., Nu~nez, A., Babuska, R., 

Schutter, B.D.: Deep convolutional neural networks for detection 

of rail surface defects. In: 2016 International Joint Conference 

on Neural Networks (IJCNN). (2016) 2584{2589 3

[16] Park, J.K., Kwon, B.K., Park, J.H., Kang, D.J.: Machine 

learning-based imaging system for surface defect inspection. 

International Journal of Precision Engineering and 

Manufacturing-Green Technology 3(3) (Jul 2016) 303{310 3

[17] Weimer, D., Scholz-Reiter, B., Shpitalni, M.: Design of deep 

convolutional neural network architectures for automated feature 

extraction in industrial inspection. CIRP Annals - Manufacturing 

Technology 65(1) (Jan 2016) 417{420 4

[18] K. Song and Y. Yan, “A noise-robust method based on completed 

local binary patterns for hot-rolled steel strip surface defects,” 

Appl. Surface Sci., vol. 285, pp. 858-864, Nov. 2013.

[19] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: 

Inverted residuals and linear bottlenecks: Mobile networks for 

classification, detection, and segmentation. arXiv preprint 

arXiv:1801.04381 (2018)

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet 

classification with deep convolutional neural networks. In 

Advances in neural information processing systems, pages 1097–

1105, 2012

[21] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated 

residual transformations for deep neural networks. In Computer 

Vision and Pattern Recognition (CVPR), 2017 IEEE Conference 

on, pages 5987–5995. IEEE, 2017.

[22] Yu He, Kitchen Song, Qinggang Meng, Yunhui Yan. An 

End-to-end Steel Surface Defect Detection Approach via Fusing 

Multiple Hierarchical Features. DOI 10.1109/TIM.2019.29154

04, IEEE

[23] K. Song and Y. Yan, “A noise-robust method based on completed 

local binary patterns for hot-rolled steel strip surface defects,” 

Appl. Surface Sci., vol. 285, pp. 858-864, Nov. 2013.

[24] M. Xiao, M. Jiang, and G. Li et al., “An evolutionary classifier 

for steel surface defects with a small sample set,” EURASIP J. 

Image Vid. Process., vol. 2017, no. 1, pp. 48-61, Dec. 2017

[25] P. Chen, and S.S. Ho, “Is over feat useful for image-based surface 

defect classification tasks?” in Proc. IEEE Int. Conf. Image 

Process. (ICIP), AZ, USA, Sep. 2016, pp. 749-753.

[26] R. Ren, T. Hung, and K.C. Tan, “A generic deep-learning-based 

approach for automated surface inspection,” IEEE Trans. Cybern., 

vol. 48, no. 3, pp. 929-940, Mar. 2018.

[27] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, 

vol. 521, no. 7553, pp. 436-444, May 2015.



26   Journal of The Korea Society of Computer and Information 

Authors

Avlokulov Anvar received B.C Degree in 

Tashkent University of Information 

Technology, dept. of Software Engineering. 

Avlokulov Anvar joined the faculty of the 

Department of Computer Engineering at 

Gachon University, in 2017. His research areas: Artificial 

Intelligence, Computer Vision, Pattern Recognition and 

Machine Learning 

Young Im Cho received the B.S., M.S. and 

Ph.D. degrees in Computer Science and 

Engineering from Korea University, Korea, in 

1988, 1990 and 1994, respectively. She is a 

Professor at Gachon University. Her research 

interest includes AI, Big Data, Information Retrieval, Smart 

City, etc.


