• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.032 seconds

Emotion Recovery AR System for Children with Autism Spectrum Disorder Using EEG and Deep-Learning (뇌전도와 딥러닝을 활용한 자폐 스펙트럼 장애 아동의 정서 회복 증강현실 시스템)

  • Song, Da-won;Park, Jae-Cheol;Jang, Han-Gil;Hwang, Jeong-Tae;Lee, Jun-Pyo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.529-530
    • /
    • 2021
  • 본 논문에서는 MindWave와 AR 헤드셋 기기를 연동하여 자폐 스펙트럼 장애 아동이 불안감을 느낄 때 발산되는 뇌파 신호를 실시간으로 감지한다. 또한 실시간 객체 검출을 위한 YOLOv5 알고리즘을 통해 시각적 정보를 수집하여 해당 아동이 불안감을 느끼는 원인을 파악하고 이에 맞는 해결책을 AR 형태로 제시하며 자폐 스펙트럼 장애 아동이 불안감을 느끼면 보호자에게 알림을 전송하는 앱을 구현한다. 이를 통해 자폐 스펙트럼 장애 아동의 뇌파 안정과 정서 회복을 돕고 실생활에서 발생할 수 있는 돌발 상황을 방지할 수 있는 시스템을 제안한다.

  • PDF

Development of monitoring system for detecting illegal dumping using deep learning (딥러닝 영상인식을 이용한 쓰레기 무단투기 단속 시스템 개발)

  • Bae, Chang-hui;Kim, Hyeong-jun;Yeo, Jeong-hun;Jeong, Ji-hun;Yun, Tae-jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.287-288
    • /
    • 2020
  • 우리나라의 무단 투기된 쓰레기양은 2019년 2월 기준 33만 톤이며 이를 단속하기 위해 상용화된 쓰레기 무단투기 단속 시스템은 센서를 이용하여 시스템 주변에 사람이 지나가면 영상을 촬영하기 때문에 쓰레기 무단투기자 뿐 아니라 해당 시스템 주변을 지나는 모든 사람을 촬영하기 때문에 불법 쓰레기를 배출하는지 해당 영상을 사람이 일일이 다시 분석해야한다. 본 논문에서는 쓰레기 투기 행위 이미지를 바탕으로 학습시킨 딥러닝 실시간 객체인식 알고리즘인 YOLO-v4를 활용하여 실시간으로 쓰레기 무단투기를 단속하는 시스템을 제시한다.

  • PDF

Development of exercise posture training system using deep learning for human posture recognition (인체 자세 인식 딥러닝을 이용한 운동 자세 훈련 시스템 개발)

  • Jang, Jae-Ho;Jee, Jun-Hwan;Kim, Du-Hwan;Choi, Min-Gi;Yun, Tae-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.289-290
    • /
    • 2020
  • 본 논문에서는 오픈 소스인 openpose skeleton tracking 기술을 이용하여 특정 운동 동작을 영상처리 기술과 딥러닝 기술로 인체 자세에 대해서 인지와 상황 판단하여 운동 동작에 대한 인식 결과를 도출할 수 있다. 먼저 입력받은 영상을 전달받아서 딥러닝 인식 시스템를 통해 인식 결과을 추출한 뒤 비교, 분석한 후에 사전 등록된 운동 동작 명칭으로 화면에 표시하여 이용자가 정확한 동작을 취할 수 있도록 지도하는 데 활용할 수 있다. 또한, 이 기술은 행동 인식부터 얼굴 인식, 손동작 인식 등에 다양하게 활용할 수 있다.

  • PDF

Deep Learning based Machine Remaining Useful Life Prediction System (딥러닝 기반의 기계 잔존 수명 예측 시스템)

  • Lee, Se-Hoon;Kim, Han-Sol;Jung, Chan-Young;Lee, Tae-Hyeong;Kim, Ji-Tae;Song, Kyung-Hwan;Sohn, Jung-Mo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.15-16
    • /
    • 2020
  • 본 논문에서는 산업 현장에서 사용되는 기계들의 건전성을 유지하고 예측하는 시스템을 개선할 수 있는 연구 결과를 비교하고 설명한다. 이번 연구에서는 딥러닝 기술을 이용함으로서 특정장치에 종속되지 않고 범용적으로 수집된 소음데이터를 사용하여 현장 적용의 유연성을 높이고, 딥러닝 모델 중 GRU를 이용하여 기존 연구 결과와 비교 실험을 하여 더 우수한 결과를 얻었다.

  • PDF

Edge Computing based Industrial Field Worker's Behavior Analysis System using Deep Learning (딥러닝을 활용한 엣지 컴퓨팅 기반 산업현장 작업자 행동 분석 시스템)

  • Lee, Se-Hoon;Bak, Jeong-Jun;Lee, Tae-Hyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.63-64
    • /
    • 2020
  • 본 논문에서는 딥러닝을 이용한 작업자 위험 행동 모니터링 선행 연구에 기반해, 엣지 컴퓨팅 기반 딥러닝을 사용하여 클라우드에 대한 의존성 문제를 해결하였다. 작업자는 IoT 안전벨트와 영상 전송 안전모를 통해 정보를 수집, 처리한다. 또한 LSTM 방식에서 개량된 필터를 통한 FFNN 딥러닝 방법을 사용하여 작업자 위험 행동 패턴 분석을 하며 선행 연구의 작업자 행동 모니터링 시스템을 엣지 컴퓨팅 기반 위에서 구현하였다.

  • PDF

Comment Classification System using Deep Learning Classification Algorithm based on Crowdsourcing (크라우드소싱 기반의 딥러닝 분류 알고리즘을 이용한 댓글 분류 시스템)

  • Park, Heeji;Ha, Jimin;Park, Hyaelim;Kang, Jungho
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.864-867
    • /
    • 2021
  • 뉴스, SNS 등의 인터넷 댓글은 익명으로 의견을 자유롭게 개진할 수 있는 반면 댓글의 익명성을 악용하여 비방이나 험담을 하는 악성 댓글이 여러 분야에서 사회적 문제가 되고 있다. 해당 문제를 해결하기 위해 AI를 활용한 댓글 분류 알고리즘을 개발하려는 많은 노력들이 이루어지고 있지만, 댓글 분류 모델에 사용되는 AI는 오버피팅의 문제로 인해 댓글 분류에 대한 정확도가 떨어지는 문제점을 가지고 있다. 이에 본 연구에서는 크라우드소싱을 활용하여 오버피팅으로 인한 악성 댓글 분류 및 판단 정확도 저하 문제를 개선한 크라우드소싱 기반 딥러닝 분류 알고리즘(Deep Learning Classification Algorithm Based on Crowdsourcing: DCAC)과 해당 알고리즘을 사용한 시스템을 제안한다. 또한, 실험을 통해 오버피팅으로 낮아진 판단 정확도를 증가시키는 데 제안된 방법이 도움이 되는 것을 확인하였다.

A study on the Deep Learning model-based pedestrian GPS trajectory prediction system (딥러닝 모델 기반 보행자 GPS 경로 예측 시스템 연구)

  • Yoon, Seung-Won;Lee, Won-Hee;Lee, Kyu-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.89-92
    • /
    • 2022
  • 본 논문에서는 딥러닝 모델 기반 보행자의 GPS 경로를 예측하는 시스템을 제안한다. 다양한 경로 예측 방식들 중 본 논문은 GPS 데이터 기반 경로 예측 연구이다. 시계열 데이터인 보행자의 GPS 경로를 학습하여 다음 경로를 예측하도록 하는 딥러닝 모델 기반 연구이다. 본 논문에서는 보행자의 GPS 경로를 딥러닝 모델이 학습할 수 있도록 데이터 구성 방식을 제시하였으며, 예측 범위에 큰 제약이 없는 예측 딥러닝 모델을 제안한다. 본 논문의 딥러닝 모델에 적합한 파라메터들을 제시하였으며, 우수한 예측 성능을 보이는 결과를 제시한다.

  • PDF

Pig Face Recognition Using Deep Learning (딥러닝을 이용한 돼지 얼굴 인식)

  • MA, RUIHAN;Kim, Sang-Cheol
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.493-494
    • /
    • 2022
  • The development of livestock faces intensive farming results in a rising need for recognition of individual animals such as cows and pigs is related to high traceability. In this paper, we present a non-invasive biometrics systematic approach based on the deep-learning classification model to pig face identification. Firstly, in our systematic method, we build a ROS data collection system block to collect 10 pig face data images. Secondly, we proposed a preprocessing block in that we utilize the SSIM method to filter some images of collected images that have high similarity. Thirdly, we employ the improved image classification model of CNN (ViT), which uses the finetuning and pretraining technique to recognize the individual pig face. Finally, our proposed method achieves the accuracy about 98.66%.

Automatic empty-bottles refund system using deep learning (딥러닝을 활용한 공병 자동 환급 시스템)

  • Do-Kyun Kim;Chang-Geun Kim;Ju-Sung Jeon;Sung-Han Shin;Young-Seok Jung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.285-286
    • /
    • 2024
  • 본 연구에서는 현대 사회의 환경 보호 관심 상승과 소비자들의 재활용 참여 욕구를 고려하여 YOLOv5를 활용한 무인 공병 환급기를 개발하였다. 이 시스템은 정확한 물체 감지와 금액 추정 알고리즘을 결합하여 사용자가 간편하게 공병을 반환하고 적절한 보상을 받을 수 있는 효과적인 시스템을 제공한다. 프로젝트의 성공은 재활용 참여율 증가와 지속 가능한 소비 문화 형성에 기여할 것으로 기대된다.

  • PDF

Sinkhole Tracking by Deep Learning and Data Association (딥 러닝과 데이터 결합에 의한 싱크홀 트래킹)

  • Ro, Soonghwan;Hoai, Nam Vu;Choi, Bokgil;Dung, Nguyen Manh
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.6
    • /
    • pp.17-25
    • /
    • 2019
  • Accurate tracking of the sinkholes that are appearing frequently now is an important method of protecting human and property damage. Although many sinkhole detection systems have been proposed, it is still far from completely solved especially in-depth area. Furthermore, detection of sinkhole algorithms experienced the problem of unstable result that makes the system difficult to fire a warning in real-time. In this paper, we proposed a method of sinkhole tracking by deep learning and data association, that takes advantage of the recent development of CNN transfer learning. Our system consists of three main parts which are binary segmentation, sinkhole classification, and sinkhole tracking. The experiment results show that the sinkhole can be tracked in real-time on the dataset. These achievements have proven that the proposed system is able to apply to the practical application.