DOI QR코드

DOI QR Code

Sinkhole Tracking by Deep Learning and Data Association

딥 러닝과 데이터 결합에 의한 싱크홀 트래킹

  • Received : 2019.04.02
  • Accepted : 2019.05.23
  • Published : 2019.06.30

Abstract

Accurate tracking of the sinkholes that are appearing frequently now is an important method of protecting human and property damage. Although many sinkhole detection systems have been proposed, it is still far from completely solved especially in-depth area. Furthermore, detection of sinkhole algorithms experienced the problem of unstable result that makes the system difficult to fire a warning in real-time. In this paper, we proposed a method of sinkhole tracking by deep learning and data association, that takes advantage of the recent development of CNN transfer learning. Our system consists of three main parts which are binary segmentation, sinkhole classification, and sinkhole tracking. The experiment results show that the sinkhole can be tracked in real-time on the dataset. These achievements have proven that the proposed system is able to apply to the practical application.

최근 자주 발생하는 싱크 홀(sinkhole)을 정확하게 발견하고 추적하는 것은 사람 및 재산 피해를 예방하기 위해서 매우 중요하다. 그 동안 싱크 홀을 검출하기 위한 방안들이 많이 제안되었지만 지하 깊은 곳에서 발생하는 싱크 홀에 대한 검출은 완전히 해결되지 않고 있다. 또한 실시간으로 싱크 홀을 감지하고 실시간으로 경고를 발생하는 시스템은 아직 안정화되지 않은 상태이다. 본 연구는 딥 러닝과 데이터 결합에 의해 싱크 홀을 실시간으로 검출하기 위한 연구이며, 제안하는 알고리즘은 크게 바이너리 분할(binrary segmentation), 싱크 홀분류(sinkhole classification) 및 싱크 홀 추적(sinkhole tracking)의 세 가지 주요 부분으로 구성된다. 실험 결과 싱크 홀이 실시간으로 데이터 세트에서 추적 될 수 있음을 보여주었다. 따라서 본 연구에서 제안된 시스템은 싱크 홀을 탐지하기 위해서 실제로 적용될 수 있음을 보여준다.

Keywords

References

  1. E. Intrieri, G. Gigli, M. Nocentini, L. Lombardi, F. Mugnai, F. Fidolini, and N. Casagli, "Sinkhole monitoring and early warning: an experimental and successful GB- InSAR application", Geomorphology, Vol. 241, pp. 304-314, Jul. 2015. https://doi.org/10.1016/j.geomorph.2015.04.018
  2. T. L. Dobecki and S. B. Upchurch, "Geophysical applications to detect sinkholes and ground subsidence", Leading Edge, Vol. 25, No. 3, pp. 336-341, Mar. 2006. https://doi.org/10.1190/1.2184102
  3. A. Billi, L. D. Filippis, P. P. Poncia, P. Sella, and C. Faccenn, "Hidden sinkholes and karst cavities in the travertine plateau of a highly-populated geothermal seismic territory (Tivoli, central Italy)", Geomorphology, Vol. 255, pp. 63-80, Feb. 2016. https://doi.org/10.1016/j.geomorph.2015.12.011
  4. D. Bloomquist, R. Shrestha, and C. Slatton, "Early sinkhole detection and verification using airborne laser and infrared technologies", Final report BC-354-54, Department of Civil and Coastal Engineering, University of Florida, 2005.
  5. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards realtime object detection with region proposal networks", Proc. Advances in Neural Information Processing Systems, pp. 91-99, Jan. 2016.
  6. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection", Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 779-788, 2016.
  7. Lee, Eun Ju, Sang Young Shin, Byoung Chul Ko, and Chunho Chang, "Early sinkhole detection using a drone-based thermal camera and image processing", Infrared Physics and Technology, Vol. 78, pp. 223-232, Sep. 2016. https://doi.org/10.1016/j.infrared.2016.08.009
  8. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D., "Backpropagation applied to handwritten zip code recognition", Neural computation, Vol. 1, No. 4, pp. 541-551, Dec. 1989. https://doi.org/10.1162/neco.1989.1.4.541
  9. Munkres J, "Algorithms for assignment and transportation problems", Journal of the Society for Industrial and Applied Mathematics, Vol. 5, No. 1, pp. 32-38, Mar. 1957. https://doi.org/10.1137/0105003
  10. Nguyen Manh Dung and Soonghwan Ro, "Algorithm for Fire Detection using a Camera Surveillance System", Proceedings of the International Conference on Image and Graphics Processing(ICIGP 2018), pp. 38-42, Feb. 2018.
  11. Nobuyuki Otsu, "A threshold selection method from gray-level histograms", IEEE transactions on systems, man, and cybernetics, Vol. SMC-9, No. 1, pp. 62-66, Jan. 1979. https://doi.org/10.1109/TSMC.1979.4310076
  12. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification with deep convolutional neural networks", Proceedings of the Advances in neural information processing systems, pp. 1097-1105, Dec. 2012.
  13. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Deep residual learning for image recognition", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, Jun. 2016.
  14. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, "Imagenet : A large-scale hierarchical image database", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, Jun. 2009.
  15. Wanli Xu, Shuo Bao, and Zhun Liu, "Data Association Algorithm Overview and Performance Evaluation", Proceedings of the International Industrial Information and Computer Engineering Conference, pp. 262-265, Mar. 2015.

Cited by

  1. Design and Development of Thermal Camera Supporting Multi-Streaming Video vol.18, pp.4, 2019, https://doi.org/10.14801/jkiit.2020.18.4.21