• 제목/요약/키워드: Decoupling control method

검색결과 125건 처리시간 0.022초

역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계 (Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It)

  • 최진영;이광현;이재성;김상훈;양현석;박노철;박영필
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.117-122
    • /
    • 2006
  • A novel method to find interaction dynamics between focusing direction and tracking direction in an optical pick-up is proposed. and the decoupling control to reduce the interaction effect is discussed. First, the basic principle to detect dynamic interaction analysis using back electromotive force is introduced. Second, the interaction analysis between focusing and tracking direction of is analyzed for a commercial slim type optical pick-up. Finally. decoupling control process and its simulation results are shown.

  • PDF

Analysis and Design of a Three-port Flyback Inverter using an Active Power Decoupling Method to Minimize Input Capacitance

  • Kim, Jun-Gu;Kim, Kyu-Dong;Noh, Yong-Su;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.558-568
    • /
    • 2013
  • In this paper, a new decoupling technique for a flyback inverter using an active power decoupling circuit with auxiliary winding and a novel switching pattern is proposed. The conventional passive power decoupling method is applied to control Maximum Power Point Tracking (MPPT) efficiently by attenuating double frequency power pulsation on the photovoltaic (PV) side. In this case, decoupling capacitor for a flyback inverter is essentially required large electrolytic capacitor of milli-farads. However using the electrolytic capacitor have problems of bulky size and short life-span. Because this electrolytic capacitor is strongly concerned with the life-span of an AC module system, an active power decoupling circuit to minimize input capacitance is needed. In the proposed topology, auxiliary winding defined as a Ripple port will partially cover difference between a PV power and an AC Power. Since input capacitor and auxiliary capacitor is reduced by Ripple port, it can be replaced by a film capacitor. To perform the operation of charging/discharging decoupling capacitor $C_x$, a novel switching sequence is also proposed. The proposed topology is verified by design analysis, simulation and experimental results.

벅-타입 능동 전력 디커플링을 위한 가변 스텝을 적용한 최적 보상 이득 알고리즘 (The Optimal Compensation Gain Algorithm Using Variable Step for Buck-type Active Power Decoupling Circuits)

  • 백기호;김승권;박성민
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.121-128
    • /
    • 2018
  • This work proposes a simple control method of a buck-type active power decoupling circuit that can minimize the ripple values in the dc link voltage. The proposed method utilizes a simplified duty calculation method and an optimal compensation gain tracking algorithm with variable-step approach. Thus, the dc link voltage ripple can be effectively reduced through the proposed method along with rapid response in tracking the optimum compensation gain. Moreover, the proposed method has better dynamic responses in the load fluctuation or abnormal situation. MATLAB/Simulink simulation and hardware-in-the-loop-simulation(HILS)-based experimental results are presented to validate the effectiveness of the proposed control method.

모듈형 플러그인 능동전력디커플링 회로를 위한 계통전압 추종 방법 (Grid Voltage Estimation Method for Modular Plug-in Active Power Decoupling Circuits)

  • 김동희;김정태;박성민;정교범
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.294-297
    • /
    • 2021
  • A grid voltage estimation method for modular plug-in active power decoupling (APD) circuits is proposed in this study as direct replacements of electrolytic capacitors. Since modular plug-in APD circuits cannot have additional grid voltage sensors and should be operated independently without information exchange with the front-end converter, it is impossible to obtain the phase information of the grid directly. Therefore, the proposed method uses the second-order harmonic component of the DC-link voltage to estimate the grid voltage necessary to control the APD circuit. By employing the proposed method, the concept of modular plug-in APD circuits can be realized and implemented without direct detection of the grid voltage. The experimental results based on hardware-in-the-loop simulation (HILS) validate the effectiveness of the proposed control method.

The Control of Superheat and Capacity for a Variable Speed Refrigeration System Based on PI Control Logic

  • Hua, Li;Jeong, Seok-Kwon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권2호
    • /
    • pp.54-60
    • /
    • 2007
  • In this paper, we suggest the high efficient control method based on general PI control law for a variable speed refrigeration system. In the variable speed refrigeration system, the capacity and the superheat are mainly controlled by an inverter and an electronic expansion valve, respectively, for saving energy and improving coefficient of performance. Thus, we proposed a decoupling model to eliminate the interfering loop between the capacity and superheat at first. Next, we designed PI controller to control the capacity and superheat independently and simultaneously. Finally, the control performance was investigated through some experiments. The experimental results showed that the proposed PI controller based on the decoupling model can obtain good control performance under the various control references and thermal load.

A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

  • Shen, Hanlin;Luo, Xin;Liang, Guilin;Shen, Anwen
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1708-1719
    • /
    • 2018
  • A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

비 간섭 슬라이딩 모드 기법을 이용한 로봇 매니퓰레이터의 궤도제어 (Trajectory control of a manipulator by the decoupling sliding mode method)

  • 남택근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.842-848
    • /
    • 2005
  • The decoupling control using state feedback was once intensively studied during 1960's by many researchers. However, this control scheme was sensitive to the disturbance and Parameter variations. SMC(sliding mode control) is known as a robust control methodology to overcome such a disturbance. In this paper. the decoupling control by means of SM(sliding mode) for a trajectory control of a two-degrees-of- freedom manipulator was discussed. The position and velocity of manipulator tip were adopted to compose a nonlinear error functions. The reference inputs of the controller can be decided by switching function combined with the desired position and velocity. Simulation result is provided to verify the effectiveness of the proposed control scheme.

비 간섭 슬라이딩모드제어에 관한 연구 (A Study on the Decoupling Sliding Mode Control)

  • 박재식;노영오;안병원;남택근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권7호
    • /
    • pp.1152-1158
    • /
    • 2004
  • In this paper, a trajectory tracking problems using SMC(sliding mode control) is presented. In the conventional method. SMC has been applied to linear systems and the output matrix C has to satisfy a restrictive condition that CB is nonsingular. Under suitable assumptions, decoupling SMC can be adapted to remove the restriction mentioned above. The Proposed control strategy is applied to trajectory tracking control and simulations results are given to demonstrate the effectiveness of the proposed control scheme.

Stability Analysis of FCHEV Energy System Using Frequency Decoupling Control Method

  • Dai, Peng;Sun, Weinan;Xie, Houqing;Lv, Yan;Han, Zhonghui
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.490-500
    • /
    • 2017
  • Fuel cell (FC) is a promising power supply in electric vehicles (EV); however, it has poor dynamic performance and short service life. To address these shortcomings, a super capacitor (SC) is adopted as an auxiliary power supply. In this study, the frequency decoupling control method is used in electric vehicle energy system. High-frequency and low-frequency demand power is provided by SC and FC, respectively, which makes full use of two power supplies. Simultaneously, the energy system still has rapidity and reliability. The distributed power system (DPS) of EV requires DC-DC converters to achieve the desired voltage. The stability of cascaded converters must be assessed. Impedance-based methods are effective in the stability analysis of DPS. In this study, closed-loop impedances of interleaved half-bridge DC-DC converter and phase-shifted full-bridge DC-DC converter based on the frequency decoupling control method are derived. The closed-loop impedance of an inverter for permanent magnet synchronous motor based on space vector modulation control method is also derived. An improved Middlebrook criterion is used to assess and adjust the stability of the energy system. A theoretical analysis and simulation test are provided to demonstrate the feasibility of the energy management system and the control method.

병렬형 역진자 시스템 제작 및 분리제어 (Implementation of a Parallel Inverted Pendulum System with Decoupling Control)

  • 김주호;박운식;최재원
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.162-169
    • /
    • 2000
  • In this paper, we develop a parallel inverted pendulum system that has the characteristics of the strongly coupled dynamics of motion by an elastic spring, the time-variant system parameters, and inherent instability, and so on. Hence, it is possible to approximate some kinds of a physical system into this representative system and to apply the various control theories to this system in order to verie their fidelity and efficiency. For this purpose, an experimental system of the parallel inverted pendulum has been implemented, and a control scheme using the eigenstructure assignment for decoupling control is presented in comparison with the conventional LQR optimal control method. Furthermore, this system can be utilized as a testbed to develop and evaluate new control algorithms through various setups. Finally, in this paper, the results of the experiment are compared with those of numerical simulations for validation.

  • PDF