• Title/Summary/Keyword: Decoupled Algorithm

Search Result 75, Processing Time 0.023 seconds

A Feature of Stellar Density Distribution within Tidal Radius of Globular Cluster NGC 6626 in the Bulge Direction

  • Chun, Sang-Hyun;Lim, Dong-Wook;Kim, Myo-Jin;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2010
  • We have investigated the spatial configuration of stars within the tidal radius of metal poor globular cluster NGC 6626 in the bulge direction. Data were obtained in near-IR J,H,Ks bands with wide-field ($20'\times20'$) detector, WIRCam at CFHT. To trace the stellar density around target cluster, we sorted cluster's member stars by using a mask filtering algorithm and weighting the stars on the color-magnitude diagram. From the weighted surface density map, we found that the stellar spatial distributions within the tidal radius appear asymmetric and distorted features. Especially, we found that more prominent over-density features are extending toward the direction of Galactic plane rather than toward the directions of the Galactic center and its orbital motion. This orientation of the stellar density distribution can be interpreted with result of disk-shock effect of the Galaxy that the cluster had been experienced. Indeed, this over-density feature are well represented in the radial surface density profile for different angular sections. As one of the metal poor globular clusters with extended horizontal branch (EHB) in the bulge direction, NGC 6626 is kinematically decoupled from the normal clusters and known to have disk motion of peculiar motion. Thus, our result will be able to add further constraints to understand the origin of this cluster and the formation of bulge region in early universe.

  • PDF

SDINS/GPS/ZUPT Integration Land Navigation System for Azimuth Improvement (방위각 개선을 위한 SDINS/GPS/ZUPT 결합 지상 항법 시스템)

  • Lee, Tae-Gyoo;Cho, Yun-Cheol;Jang, Suk-Won;Park, Jai-Yong;Sung, Chang-Ky
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.5-12
    • /
    • 2006
  • This study describes an SDINS/GPS/ZUPT integration algorithm for land navigation systems. The SDINS error can be decoupled in two parts. The first part is the the Schuler component which does not depend on object motion parameters, and the other is the Non-Schuler part which depends on the product of object acceleration and azimuth error. Azimuth error causes SDINS error in proportion to the traversed distance. The proposed system consists of a GPS/SDINS integration system and an SDINS/ZUPT integration system, which are both realized by an indirect feedforward Kalman filter. The main difference between the two is whether the estimate includes the Non-Schuler error or not, which is decided by the measurement type. Consequently, subtracting GPS/SDINS outputs from SDINS/ZUPT outputs provide the Non-Schuler error information which can be applied to improving azimuth accuracy. Simulation results using the raw data obtained from a van test attest that the proposed SDINS/GPS/ZUPT system is capable of providing azimuth improvement.

Design of an OPtimal Controller for the Nonlinear Robot Manipulators with the Actuator Dynamics (조작기의 동특성을 고려한 비선형 로봇 매니퓰레이터의 최적 제어기 설계)

  • 김학범;이양범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1376-1385
    • /
    • 1993
  • This paper presents a new dynamic model which is represented by the second order differenatial equation and itcludes the robot arm dynamics as well as the actuator dynamics. The model exhibits excellent performance in the steady state and transient response. In addition the time varing nonlinear and coupled dynamic system has been linearized and decoupled by using nonlinear feedback and linearization method. In this case a pole assignment law is used to improve stability, and the optimal control altorithm is applied to the error equation to minimize the path error. In applying the proposed algorithm to the three joint manipulator with actuators, we obtained very encouraging results.

  • PDF

Development of the Contingency Analysis Program of Korean Energy Management System (한국형 에너지 관리시스템용 상정고장 해석프로그램 개발)

  • Cho, Yoon-Sung;Yun, Sang-Yun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.232-241
    • /
    • 2010
  • This paper describes the development of robust contingency analysis program for Korean Energy Management System. The important function of contingency analysis is to determine the bus/branch model for contingency, and to calculate the state of the power network based on the network model and topology output. In the proposed method, the bus/branch models for contingencies are determined exactly using a fast linked-list method based on the application common model database. To calculate the state of the power system included contingency, the full-decoupled powerflow approach, the partial powerflow method for contingencies and the proposed contingency screening algorithm are also used to contingency analysis. To verify the performance of the developed processor, we performed a file-based test using several structured input data and online test using the database which resides on memory. The results of these comprehensive tests showed that the developed processors can accurately calculate the power system contingency state from online data and can be applied to Korea Power Exchange system.

Attitude and Direction Control of the Unicycle Robot Using Fuzzy-Sliding Mode Control (퍼지-슬라이딩모드 제어기를 이용한 외바퀴 로봇의 자세제어 및 방향제어)

  • Lee, Jae-Oh;Han, Seong-Ik;Han, In-Woo;Lee, Seok-In;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.275-284
    • /
    • 2012
  • This paper proposes an attitude and direction control of a single wheel balanced robot. A unicycle robot is controlled by two independent control laws: the mobile inverted pendulum control method for pitch axis and the reaction wheel pendulum control method for roll axis. It is assumed that both roll dynamics and pitch dynamics are decoupled. Therefore the roll and pitch dynamics are obtained independently considering the interaction as disturbances to each other. Each control law is implemented by a controller separately. The unicycle robot has two DC motors to drive the disk for roll and to drive the wheel for pitch. Since there is no force to change the yaw direction, the present paper proposes a method for changing the yaw direction. The angle data are obtained by a fusion of a gyro sensor and an accelerometer. Experimental results show the performance of the controller and verify the effectiveness of the proposed control algorithm.

Current Case & Future Study applied on Distribution System Load Flow Algorithm (배전계통에 적용된 조류계산 알고리즘 적용사례 및 미래형 연구)

  • Lee, S.S.;Song, K.J.;Sohn, J.M.;Han, J.G.;Lee, T.Y.;Park, J.K.;Moon, S.I.;Kim, J.C.;Lee, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.181-183
    • /
    • 2003
  • 본 연구에서는 현재 국내-외 논문을 참조하여 배전계통에 적용된 조류계산 알고리즘의 적용사례를 조사하였다. 배전계통에 적용된 조류계산알고리즘은 Power Summation Method와 Current Summation Method가 있다. 배전계통은 선로의 구조가 거의 대부분 방사상으로 성되어 있기 때문에 Newton Raphson, Gauss Seidel, Fast Decoupled 방법을 그대로 사용하기는 문제가 있다. 그래서 DistFlow, Forward/Backward sweeping 법 등이 주로 사용되어 왔다. 그러나 미래의 계통은 현재와는 또 다른 Topology로 방사상과 루프가 혼합된 형태로 다르게 구성되어야 할 것이다. 이러한 상황에서 미래의 배전계통에 대하여 적용 가능한 알고리즘을 전망하고져 한다.

  • PDF

Development of Polymer Slip Tactile Sensor Using Relative Displacement of Separation Layer (분리층의 상대 변위를 이용한 고분자 미끄럼 촉각 센서 개발)

  • Kim, Sung-Joon;Choi, Jae-Young;Moon, Hyung-Pil;Choi, Hyouk-Ryeol;Koo, Ja-Choon
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.100-107
    • /
    • 2016
  • To realize a robot hand interacting like a human hand, there are many tactile sensors sensing normal force, shear force, torque, shape, roughness and temperature. This sensing signal is essential to manipulate object accurately with robot hand. In particular, slip sensors make manipulation more accurate and breakless to object. Up to now several slip sensors were developed and applied to robot hand. Many of them used complicate algorithm and signal processing with vibration data. In this paper, we developed novel principle slip sensor using separation layer. These two layers are moved from each other when slip occur. Developed sensor can sense slip signal by measuring this relative displacement between two layers. Also our principle makes slip signal decoupled from normal force and shear force without other sensors. The sensor was fabricated using the NBR(acrylo-nitrile butadiene rubber) and the Ecoflex as substrate and a paper as dielectric. To verify our sensor, slip experiment and normal force decoupling test were conducted.

A Study on a Load Flow calculation for Preserved Jacobian Matrix's elements except diagonal terms (Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구)

  • Moon, Yong-Hyun;Lee, Jong-Gi;Choi, Byoung-Kon;Park, Jeong-Do;Ryu, Hun-Su
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.311-315
    • /
    • 1998
  • Load Flow calculation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning, operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to solve load flow equation and to modify above defects. And it preserve certain part of Jacobian matrix to shorten the time of calculation. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical result and the number of iteration got by Newton-Raphson method. The effect of time reduction showed about 28%, 30%, at each case of 39 bus, 118 bus system.

  • PDF

Active and Passive Beamforming for IRS-Aided Vehicle Communication

  • Xiangping Kong;Yu Wang;Lei Zhang;Yulong Shang;Ziyan Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1503-1515
    • /
    • 2023
  • This paper considers the jointly active and passive beamforming design in the IRS-aided MISO downlink vehicle communication system where both V2I and V2V communication paradigms coexist. We formulate the problem as an optimization problem aiming to minimize the total transmit power of the base station subject to SINR requirements of both V2I and V2V users, total transmit power of base station and IRS's phase shift constraints. To deal with this non-convex problem, we propose a method which can alternately optimize the active beamforming at the base station and the passive beamforming at the IRS. By using first-order Taylor expansion, matrix analysis theory and penalized convex-concave process method, the non-convex optimization problem with coupled variables is converted into two decoupled convex sub-problems. The simulation results show that the proposed alternate optimization algorithm can significantly decrease the total transmit power of the vehicle base station.

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.