• Title/Summary/Keyword: Decontamination Technology

Search Result 232, Processing Time 0.028 seconds

Effects of Decontamination Treatments on Chemical Components of Panax Ginseng-Leaf Tea (살균처리가 인삼엽록차의 화학성분에 미치는 영향)

  • Kwon, Joong-Ho;Byun, Myung-Woo;Choi, Kang-Ju;Kwon, Dae-Won;Cho, Han-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.65-69
    • /
    • 1992
  • The comparative effects of ethylene oxide(EO) fumigation and gamma irradiation (5 kGy) were determined on the chemical components of exportable ginseng-leaf tea which is required for improving the hygienic quality. Saponins and fatty acids detected in the samples were found to be resistant to both treatments at the practical levels. In an experiment on free sugar and amino acids, however, quantitative analysis has shown that glucose, lysine and histidine in the samples are significantly decreased by EO fumigation (p<0.05) and that negligible changes were observed in gamma-irradiated samples.

  • PDF

Acceptable Decontamination Factor for Near-Surface Disposal of PEACER Wastes

  • Kim, Sung-Il;Lee, Kun-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.280-289
    • /
    • 2005
  • A pyrochemical process has been introduced and utilized so that the transmutation of spent PWR fuel in PEACER can produce mainly low and intermediate level waste for near surface disposal. Major radioactive nuclides from PEACER pyroprocessing are composed of TRU and LLFP. In this study, the requirement for the final waste from PEACER is evaluated based on the methodology for establishment of waste acceptance criteria. Also, sensitivity analysis for several input parameters is conducted in order to determine acceptable decontamination factor (DF) and LLFP removal efficiency and to find out input parameter that extremely have an effect on DE As a result of the study, LLFP removal efficiency, especially Sr-90 and Tc-99, is proved to be a major nuclide which contributes to annual dose by human intrusion scenario rather than TRU DF. More than $98.5\%$ of LLFP have to be removed to meet below dose constraint within the DF more than 5.0E+03. Besides, because of the relative short half-life of Sr-90, the increasing of the institutional control period is recommended for most important input parameter to determine DF.

  • PDF

Development of Chemical and Biological Decontamination Technology for Radioactive Liquid Wastes and Feasibility Study for Application to Liquid Waste Management System in APR1400 (액체방사성폐기물에 대한 화학적, 생물학적 제염기술 개발 및 APR1400 액체폐기물관리계통 적용을 위한 타당성 연구)

  • Son, YoungJu;Lee, Seung Yeop;Jung, JaeYeon;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.59-73
    • /
    • 2019
  • A decontamination technology for radioactive liquid wastes was newly developed and hypothetically applied to the liquid waste management system (LWMS) of the nuclear power plant (NPP) to evaluate its decontamination efficacy for the purpose of the fundamental reduction of spent resins. The basic principle of the developed technology is to convert major radionuclide ions in the liquid wastes into inorganic crystal minerals via chemical or biological techniques. In a laboratory batch experiment, the biological method selectively removed more than 80% of cesium within 24 hours, and the chemical method removed more than 95% of cesium. Other major nuclides (Co, Ni, Fe, Cr, Mn, Eu), which are commonly present in nuclear radioactive liquid wastes, were effectively scavenged by more than 99%. We have designed a module including the new technology that could be hypothetically installed between the reverse osmosis (R/O) package and the organic ion-exchange resin in the LWMS of the APR1400 reactor. From a technical evaluation for the virtual installation, we found that more than 90% of major radionuclides in the radioactive liquid wastes were selectively removed, resulting in a large volume reduction of spent resins. This means that if the new technology is commercialized in the future, it could possibly provide drastic cost reduction and significant extension of the life of resins in the management of spent resins, consequently leading to delay the saturation time of the Wolsong repository.

High-temperature electrochemical corrosion behavior of SA106 Grade B carbon steel with corrosion inhibitors in HyBRID solution

  • Sung-Wook Kim;Sang-Yoon Park;Chang-Hyun Roh;Sun-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2256-2262
    • /
    • 2023
  • The electrochemical corrosion behaviors of SA106 Grade B (SA106B) carbon steel in H2SO44-N2H4 and H2SO4-N2H4-CuSO4 solutions at 95 ℃ have been investigated with the addition of commercial corrosion inhibitors (CI#30 and No. 570S), to determine the stability of SA106B in the hydrazine-based reductive metal ion decontamination (HyBRID) process. The potentiodynamic polarization experiment revealed that the corrosion inhibitors were capable of lowering the corrosion rate of SA106B in H2SO4-N2H4 solution. It was found that the corrosion inhibitors induced formation of fixed surface layer on the carbon steel upon the corrosion. This corrosion inhibition performance was reduced in the presence of CuSO4 in the solution owing to the chemical reactions between organic compounds in the corrosion inhibitors and CuSO4. CI#30 showed a better corrosion inhibition effect in the H2SO4-N2H4-CuSO4 solution. Although the corrosion inhibitors can provide better stability to SA106B in the HyBRID solution, their application should be carefully considered because it may result in reduced decontamination performance and increased secondary waste generation.

Trends in Technology Development for the Treatment of Radioactive Concrete Waste (방사성 콘크리트 폐기물의 국내외 처리기술 개발 동향)

  • Lee, Keun-Young;Oh, Maengkyo;Kim, Jimin;Lee, Eil-Hee;Kim, Ik-Soo;Kim, Kwang-Wook;Chung, Dong-Yong;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.93-105
    • /
    • 2018
  • In Korea, a huge amount of radioactive concrete waste will be generated through decommissioning of nuclear facilities in the near future; therefore, optimum technology for the treatment of concrete waste should be reviewed thoroughly and the future direction of technology development should be discussed. In this paper, many domestic and foreign examples of generation of radioactive concrete waste were pieced together and the characteristics of radioactive concrete waste were examined. Moreover, we reviewed trends in technology development by analyzing the examples of various studies and practical applications of treatment technologies, such as mechanical decontamination, chemical decontamination, volume reduction, recycling and solidification, and also tried to understand the limitations of existing technologies and determine a direction for technical improvement.

Microbial Decontamination of Vegetables and Spices Using Cold Plasma Treatments (비열 플라즈마 처리를 이용한 채소와 향신료의 미생물 저감화)

  • Kim, Jung Eun;Kim, In-Hah;Min, Sea C.
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.735-741
    • /
    • 2013
  • Effects of cold plasma treatment (CPT) against Salmonella Typhimurium inoculated on cabbage and lettuce, naturally occurring bacteria in black pepper powder and red pepper powder, and Bacillus cereus inoculated onto red pepper powder were investigated. The numbers of S. Typhimurium on cabbage and lettuce were reduced by $1.5{\pm}0.2CFU/cm^2$ (900W, 5 min) and $1.1{\pm}0.1$ log $CFU/cm^2$ (900W, 10 min), respectively. The numbers of naturally occurring aerobic bacteria in both black pepper powder and red pepper powder were reduced by $2.3{\pm}0.3$ and $0.6{\pm}0.2$ log CFU/g, respectively. The numbers of B. cereus vegetative cells on red pepper powder were reduced by $1.5{\pm}0.1$ log CFU/g, but the numbers of spores remained unchanged. The inhibition of S. Typhimurium on cabbage was adequately described by Fermi's model and the Weibull model. The predicted optimum treatment power and time for S. Typhimurium inoculated onto cabbage were 746 W and 6.8 min, respectively. Our results indicate that CPT represents a useful method for microbial decontamination of vegetables and spices.

Process Analysis on the Decontamination of Internal Surface of $UF_6$ Cylinder ($UF_6$ 실린더 내부표면 제염에 관한 공정분석)

  • Chun, Kwan-Sik;Yoo, Sung-Hyun;Cho, Young-June;Hong, Jang-Pyo;Han, Wook-Jin;Choi, Beong-Soon;Kang, Pil-Sang;Cho, Suk-Ju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.161-165
    • /
    • 2009
  • To evaluate the efficiency of the decontamination plant for the removal of uranium compounds deposited on the internal surface of $UF_6$ cylinder for its reuse, two demonstration tests of the plant with different ratio of ${Na_2}{CO_3}$ and ${H_2}{O_2}$ were carried out, and each test had 5 steps. The main chemical form removed by the tests was to be identified as ${Na_4}{UO_2}(CO_3)_3$. More than 50% of uranium was removed by water of the first step, and at the following steps the removal amounts were exponentially decreased. On the other hand, the result shows that the injected amount of ${Na_2}{CO_3}$, compared with that of the removed uranium, was stoichiometrically excessed. This suggests that the injected amounts of ${Na_2}{CO_3}$, the generation rate of decontaminated waste, and the decontamination steps could be reduced by a process optimization of the plant.

  • PDF

Quality Stability of Spinach Powder As Influenced by Microbial Decontamination Treatment (시금치 분말의 품질안정성에 대한 살균처리의 영향)

  • Kwon, Joong-Ho;Byun, Myung-Woo;Cho, Han-Ok;Choi, Jong-Uck
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.167-171
    • /
    • 1994
  • With a view to improving microbiological quality of spinach powder which is currently used for convenience food production, comparative efficacy of ethylene oxide(EO) fumigation and gamma irradiation was investigated by determining microbial populations and physicochemical quality for treated samples. Spinach powder was contaminated with various microorganisms ranging from $10^{2}/g\;to\;10^{4}/g$, which composed of thermophiles, acid tolerant bacteria, fungi, coliforms, etc. Microorganisms contaminated were destroyed up to undetected levels by gamma irradiation at below 7 kGy. showing the radiosensitivity $D_{10}$ 2.93 kGy on total aerobic bacteria. Ethylene oxide fumigation, however. was found unsatisfactory for physicochemical quality as well as microbial decontamination of the sample. It has been generally observed that influence of optimum-dose range of irradiation on the physicochemical qualities was insignificant, which was proved in the organoleptic evaluations on the stored sample.

  • PDF

EVALUATION OF FERROCYANIDE ANION EXCHANGE RESINS REGARDING THE UPTAKE OF Cs+ IONS AND THEIR REGENERATION

  • Won, Hui-Jun;Moon, Jei-Kwon;Jung, Chong-Hun;Chung, Won-Yang
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.489-496
    • /
    • 2008
  • Ferrocyanide-anion exchange resin was prepared and the prepared ion exchange resins were tested on the ability to uptake $Cs^+$ ion. The prepared ion exchange resins were resin-KCoFC, resin-KNiFC, and resin-KCuFC. The three tested ion exchange resins showed ion exchange selectivity on the $Cs^+$ ion of the surrogate soil decontamination solution, and resin-KCoFC showed the best $Cs^+$ ion uptake capability among the tested ion exchange resins. The ion exchange behaviors were explained well by the modified Dubinin-Polanyi equation. A regeneration feasibility study of the spent ion exchange resins was also performed by the successive application of hydrogen peroxide and hydrazine. The desorption of the $Cs^+$ ion from the ion exchange resin satisfied the electroneutrality condition in the oxidation step; the desorption of the $Fe^{2+}$ ion in the reduction step could also be reduced by adding the $K^+$ ion.

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Lee, Byeonghee;Kim, Sung-Il;Ha, Kwang Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2702-2713
    • /
    • 2022
  • A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.