DOI QR코드

DOI QR Code

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Received : 2021.10.18
  • Accepted : 2022.01.06
  • Published : 2022.07.25

Abstract

A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (Ministry of Trade, Industry and Energy) (No.KETEP-20181510101970).

References

  1. A. Auvinen, J.K. Jokiniemi, A. Lahde, T. Routamob, P. Lundstrom, H. Tuomisto, J. Dienstbier, S. Guntay, D. Suckow, A. Dehbi, M. Slootman, L. Herranz, V. Peyres, J. Polo, Steam generator tube rupture (SGTR) scenarios, Nucl. Eng. Des. 235 (2005) 457-472. https://doi.org/10.1016/j.nucengdes.2004.08.060
  2. Y. Bang, G. Jung, B. Lee, K. Ahn, Estimation of temperature-induced reactor coolant system and steam generator tube creep rupture probability under high-pressure severe accident conditions, J. Nucl. Sci. Technol. 49 (2012) 857-866. https://doi.org/10.1080/00223131.2012.703945
  3. J. Song, B. Lee, S. Kim, G. Ha, An analysis of the consequences of a severe accident initiated steam generator tube rupture, Nucl. Eng. Des. 348 (2019) 14-23. https://doi.org/10.1016/j.nucengdes.2019.04.001
  4. S. Kim, H. Kang, Y. Na, E. Ryu, R. Park, J. Park, Y. Song, J. Song, S. Hong, Analysis of steam generator tube rupture accident for OPR 1000 nuclear power plant, Nucl. Eng. Des. 382 (2021) 111403. https://doi.org/10.1016/j.nucengdes.2021.111403
  5. U.S. Nuclear Regulatory Commission, Consequential SGTR Analysis for Westinghouse and Combustion Engineering Plants with Thermally Treated Alloy 600, Washington DC, 1998. NUREG-1570.
  6. U.S. Nuclear Regulatory Commission, Consequential SGTR Analysis for Westinghouse and Combustion Engineering Plants with Thermally Treated Alloy 600 and 690 Steam Generator Tubes, Washington DC, 2016. NUREG1570.NUREG-2195.
  7. T. Lind, S. Guentay, L.E. Herranz, D. Suckow, A summary of the ARTIST: aerosol retention during SGTR severe accident, Ann. Nucl. Energy 131 (2019) 385-400. https://doi.org/10.1016/j.anucene.2019.04.006
  8. T. Lind, A. Dehbi, S. Guntay, Aerosol retention in the flooded steam generator bundle during SGTR, Nucl. Eng. Des. 241 (2011) 357-365. https://doi.org/10.1016/j.nucengdes.2010.10.025
  9. L.E. Herranz, F.J.S. Velasco, C.L. del Pra, Aerosol retention near the tube breach during steam generator tube rupture sequences, Nucl. Technol. 154 (2006) 85-94. https://doi.org/10.13182/nt06-a3719
  10. F.J.S. Velasco, C.L. del Pra, L.E. Herranz, Aerosol retention in the vicinity of a breach in a tube bundle: an experimental investigation, Aerosol Sci. Technol. 44 (2010) 349-361. https://doi.org/10.1080/02786821003652638
  11. T. Lind, Y. Ammara, A. Dehbi, S. Guntay, De-agglomeration mechanisms of TiO2 aerosol agglomerates in PWR steam generator tube rupture conditions, Nucl. Eng. Des. 240 (2010) 2046-2053. https://doi.org/10.1016/j.nucengdes.2010.03.002
  12. L.E. Herranz, R.D. Tardaguila, New data and interpretation on source term attenuation within thebreak stage during meltdown SGTR sequences, Nucl. Eng. Des. 270 (2014) 283-294. https://doi.org/10.1016/j.nucengdes.2014.01.010
  13. A. Dehbi, D. Suckow, T. Lind, S. Guentay, S. Danner, R. Mukin, Key findings from the artist project on aerosol retention in a dry steam generator, Nucl. Eng. Technol. 48 (2016) 870-880. https://doi.org/10.1016/j.net.2016.06.001
  14. L.E. Herranz, C.L. del Pra, A. Dehbi, Major challenges to modeling aerosol retention near a tube breach during steam generator tube rupture sequences, Nucl. Technol. 158 (2007) 83-93. https://doi.org/10.13182/nt07-a3827
  15. L.E. Herranz, C.L. del Pra, F.J. S anchez-Velasco, Preliminary steps toward assessing aerosol retention in the break stage of a dry steam generator during severe accident SGTR sequences, Nucl. Eng. Des. 238 (2008) 1392-1399. https://doi.org/10.1016/j.nucengdes.2007.10.007
  16. S. Guntay, D. Suckow, A. Dehbi, R. Kapulla, ARTIST: introduction and first results, Nucl. Eng. Des. 231 (2004) 109-120. https://doi.org/10.1016/j.nucengdes.2004.02.012
  17. R. Mukin, A. Dehbi, Particle deposition modeling in the secondary side of a steamgenerator bundle model, Nucl. Eng. Des. 299 (2016) 112-123. https://doi.org/10.1016/j.nucengdes.2015.09.001
  18. C.L. del Pra, F.J.S. Velasco, L.E. Herranz, Aerodynamics of a gas jet entering the secondary side of a vertical shell-and-tube heat exchanger: numerical analysis of anticipated severe accident SGTR conditions, Eng. Appl. Comput. Fluid Mech. 4 (2010) 91-105. https://doi.org/10.1080/19942060.2010.11015301
  19. C.L. del Pra, F.J.S. Velasco, L.E. Herranz, Simulation of a gas jet entering the secondary side of a steam generator during a SGTR sequence: validation of a FLUENT 6.2 Model, Nucl. Eng. Des. 240 (2010) 2206-2214. https://doi.org/10.1016/j.nucengdes.2009.11.021
  20. T. Betschart, T. Lind, H.M. Prasser, Investigation of two-phase flow hydrodynamics under SGTR severe accident conditions, Nucl. Eng. Des. 366 (2020) 110768. https://doi.org/10.1016/j.nucengdes.2020.110768
  21. T. Lind, S. Campbell, L.E. Herranz, M. Kissane, JinHo Song, A summary of fission-product-transport phenomena during SGTR severe accidents, Nucl. Eng. Des. 363 (2020) 110635. https://doi.org/10.1016/j.nucengdes.2020.110635
  22. M.P. Kissane, On the nature of aerosols produced during a severe accident of a water-cooled nuclear reactor, Nucl. Eng. Des. 238 (2008) 2792-2800. https://doi.org/10.1016/j.nucengdes.2008.06.003
  23. W.C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, second ed., John Wiley and Sons, New York, 1999.
  24. P.L. Douglas, S. Ilias, On the deposition of aerosol particles on cylinders in turbulent cross flow, J. Aerosol Sci. 19 (1988) 451-462. https://doi.org/10.1016/0021-8502(88)90020-1
  25. C. Zhu, C.H. Lin, C.S. Cheung, Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers, Powder Technol. 112 (2000) 149-162. https://doi.org/10.1016/S0032-5910(99)00315-0
  26. D.E. Leaver, J. Li, R. Sher, New design applications of natural aerosol deposition in nuclear plant accident analyses, Nucl. Energy Agency 98 (1998) 4. NEA/CSNI/R.
  27. J. Lopez-Jimenez, L.E. Herranz, M.J. Escudero, M.M. Espigares, V. Peyres, J. Polo, Ch Kortz, M.K. Koch, U. Brockmeier, H. Unger, L.M.C. Dutton, Ch Smedley, W. Trow, A.V. Jones, E. Bonanni, M. Calvo, A. Alonso, Pool scrubbing, Inf. Tecnicos Ciemat 805 (1996).
  28. A. Dehbi, D. Suckow, S. Guntay, Aerosol retention in low-subcooling pools-under realistic accident conditions, Nucl. Eng. Des. 203 (2001) 229-241. https://doi.org/10.1016/S0029-5493(00)00343-5