• Title/Summary/Keyword: Decomposed Network

Search Result 75, Processing Time 0.023 seconds

A Study on the Wizard Development to Automate the Construction of Shopping Mall with Distribution (배송을 포함한 쇼핑몰 구축 상점입점마법사에 관한 연구)

  • 최윤정;이창호
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.165-174
    • /
    • 2001
  • Internet is a global network and it produces many terminologies involved in Electronic Commerce. Among many terms people very much talked about Cyber Shopping Mall. Under situation customers and sellers paid attention to Cyber Shopping Mall which is beyond time and space. This study deals with two subjects to enlarge the competitive power of Mall & Malls which is integration of multiple Cyber Shopping Mall. First subject is constructing the Automated Mall Wizard which is efficiently and effectively building Cyber Shopping Mall Site. And second subject is to differentiate from other shopping malls. Automated Mall Wizard is composed of three stages which are decomposed into several descriptive steps. And descriptive steps takes form of independent module, so it is considered to maximize Cyber Shopping Mall differentiation. Additional functions are making the goods category, related goods to be simultaneously ordered, price comparison with other sites within the Mall & Malls, best seller goods, store advertisement, substitutive goods, and mileage policy. As a result of that, we can respect SuperMall is better than other Mall & Mall as to diversity and flexibility of constructed Cyber Shopping Mall.

  • PDF

Short-term Electric Load Forecasting Based on Wavelet Transform and GMDH

  • Koo, Bon-Gil;Lee, Heung-Seok;Park, Juneho
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.832-837
    • /
    • 2015
  • The group method of data handling (GMDH) algorithm has proven to be a powerful and effective way to extract rules or polynomials from an electric load pattern. However, because it is nonstationary, the load pattern needs to be decomposed using a discrete wavelet transform. In addition, if a load pattern has a complicated curve pattern, GMDH should use a higher polynomial, which requires complex computing and consumes a lot of time. This paper suggests a method for short-term electric load forecasting that uses a wavelet transform and a GMDH algorithm. Case studies with the proposed algorithm were carried out for one-day-ahead forecasting of hourly electric loads using data during the years 2008-2011. To prove the effectiveness of our proposed approach, the results were evaluated and compared with those obtained by Holt-Winters method and artificial neural network. Our suggested method resulted in better performance than either comparison group.

An Energy Efficient Algorithm Based on Clustering Formulation and Scheduling for Proportional Fairness in Wireless Sensor Networks

  • Cheng, Yongbo;You, Xing;Fu, Pengcheng;Wang, Zemei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.559-573
    • /
    • 2016
  • In this paper, we investigate the problem of achieving proportional fairness in hierarchical wireless sensor networks. Combining clustering formulation and scheduling, we maximize total bandwidth utility for proportional fairness while controlling the power consumption to a minimum value. This problem is decomposed into two sub-problems and solved in two stages, which are Clustering Formulation Stage and Scheduling Stage, respectively. The above algorithm, called CSPF_PC, runs in a network formulation sequence. In the Clustering Formulation Stage, we let the sensor nodes join to the cluster head nodes by adjusting transmit power in a greedy strategy; in the Scheduling Stage, the proportional fairness is achieved by scheduling the time-slot resource. Simulation results verify the superior performance of our algorithm over the compared algorithms on fairness index.

Profane or Not: Improving Korean Profane Detection using Deep Learning

  • Woo, Jiyoung;Park, Sung Hee;Kim, Huy Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.305-318
    • /
    • 2022
  • Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.

Implementation and Analysis of IEEE 802.15.4 Compliant Software based on a Vertically Decomposed Task Model (수직 분할 태스크 모델 기반의 IEEE 802.15.4 소프트웨어 구현과 성능평가)

  • Kim, Hie Cheol;Yoo, Seong Eun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.53-60
    • /
    • 2014
  • IEEE 802.15.4 is one of the most widely adopted physical layer standards in the area of LR-WPAN(Low-Rate Wireless Personal Area Network). Numerous previous researches have contributed to deep insights on energy efficiency, transmission throughput, and reliability that IEEE 802.15.4 delivers to the LR-WPAN. As a research that is orthogonal and complementary to previous researches, we explore the implementation and practical performance evaluation of IEEE 802.15.4 MAC software. We implement the MAC software from the perspective of the networking stack, exploring the issues raised when the MAC software serves as a functional component in a complete networking stack consisting of MAC, network as well as well as application support layers. The performance is evaluated on a realistic experimental software environment integrated with operating system, networking stack, and applications.

Korean Compound Noun Decomposition and Semantic Tagging System using User-Word Intelligent Network (U-WIN을 이용한 한국어 복합명사 분해 및 의미태깅 시스템)

  • Lee, Yong-Hoon;Ock, Cheol-Young;Lee, Eung-Bong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.63-76
    • /
    • 2012
  • We propose a Korean compound noun semantic tagging system using statistical compound noun decomposition and semantic relation information extracted from a lexical semantic network(U-WIN) and dictionary definitions. The system consists of three phases including compound noun decomposition, semantic constraint, and semantic tagging. In compound noun decomposition, best candidates are selected using noun location frequencies extracted from a Sejong corpus, and re-decomposes noun for semantic constraint and restores foreign nouns. The semantic constraints phase finds possible semantic combinations by using origin information in dictionary and Naive Bayes Classifier, in order to decrease the computation time and increase the accuracy of semantic tagging. The semantic tagging phase calculates the semantic similarity between decomposed nouns and decides the semantic tags. We have constructed 40,717 experimental compound nouns data set from Standard Korean Language Dictionary, which consists of more than 3 characters and is semantically tagged. From the experiments, the accuracy of compound noun decomposition is 99.26%, and the accuracy of semantic tagging is 95.38% respectively.

On Constructing NURBS Surface Model from Scattered and Unorganized 3-D Range Data (정렬되지 않은 3차원 거리 데이터로부터의 NURBS 곡면 모델 생성 기법)

  • Park, In-Kyu;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.17-30
    • /
    • 2000
  • In this paper, we propose an efficient algorithm to produce 3-D surface model from a set of range data, based on NURBS (Non-Uniform Rational B-Splines) surface fitting technique. It is assumed that the range data is initially unorganized and scattered 3-D points, while their connectivity is also unknown. The proposed algorithm consists of three steps: initial model approximation, hierarchical representation, and construction of the NURBS patch network. The mitral model is approximated by polyhedral and triangular model using K-means clustering technique Then, the initial model is represented by hierarchically decomposed tree structure. Based on this, $G^1$ continuous NURBS patch network is constructed efficiently. The computational complexity as well as the modeling error is much reduced by means of hierarchical decomposition and precise approximation of the NURBS control mesh Experimental results show that the initial model as well as the NURBS patch network are constructed automatically, while the modeling error is observed to be negligible.

  • PDF

Electrical Arc Detection using Artificial Neural Network (인공 신경망을 이용한 전기 아크 신호 검출)

  • Lee, Sangik;Kang, Seokwoo;Kim, Taewon;Lee, Seungsoo;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.791-801
    • /
    • 2019
  • The serial arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet and statistical features have been used, arc detection performance is degraded due to diverse arc waveforms. Therefore, there is a need to develop a method that could increase the feature dimension, thereby improving the detection performance. In this paper, we use variational mode decomposition (VMD) to obtain multiple decomposed signals and then extract statistical features from them. The features from VMD outperform those from no-VMD in terms of detection performance. Further, artificial neural network is employed as an arc classifier. Experiments validated that the use of VMD improves the classification accuracy by up to 4 percent, based on 14,000 training data.

Deep compression of convolutional neural networks with low-rank approximation

  • Astrid, Marcella;Lee, Seung-Ik
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.421-434
    • /
    • 2018
  • The application of deep neural networks (DNNs) to connect the world with cyber physical systems (CPSs) has attracted much attention. However, DNNs require a large amount of memory and computational cost, which hinders their use in the relatively low-end smart devices that are widely used in CPSs. In this paper, we aim to determine whether DNNs can be efficiently deployed and operated in low-end smart devices. To do this, we develop a method to reduce the memory requirement of DNNs and increase the inference speed, while maintaining the performance (for example, accuracy) close to the original level. The parameters of DNNs are decomposed using a hybrid of canonical polyadic-singular value decomposition, approximated using a tensor power method, and fine-tuned by performing iterative one-shot hybrid fine-tuning to recover from a decreased accuracy. In this study, we evaluate our method on frequently used networks. We also present results from extensive experiments on the effects of several fine-tuning methods, the importance of iterative fine-tuning, and decomposition techniques. We demonstrate the effectiveness of the proposed method by deploying compressed networks in smartphones.

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF