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Abstract – The group method of data handling (GMDH) algorithm has proven to be a powerful and 
effective way to extract rules or polynomials from an electric load pattern. However, because it is 
nonstationary, the load pattern needs to be decomposed using a discrete wavelet transform. In addition, 
if a load pattern has a complicated curve pattern, GMDH should use a higher polynomial, which 
requires complex computing and consumes a lot of time. This paper suggests a method for short-term 
electric load forecasting that uses a wavelet transform and a GMDH algorithm. Case studies with the 
proposed algorithm were carried out for one-day-ahead forecasting of hourly electric loads using data 
during the years 2008–2011. To prove the effectiveness of our proposed approach, the results were 
evaluated and compared with those obtained by Holt-Winters method and artificial neural network. 
Our suggested method resulted in better performance than either comparison group.  
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1. Introduction 
 
The importance of short-term electric load forecasting 

(STLF) has been growing over the years. STLF is one of the 
significant factors in the operation of an electricity grid. 
Traditionally, accurate STLF can lead to the proper selection 
of the amount of reserve margin, which contributes to the 
improved efficiency of the power supply. STLF also helps 
in the controlling and scheduling of power systems. By 
contrast, inaccurate STLF can cause a residual or short 
supplement and may lead to overinvestment or shortage of 
electric power. 

STLF is necessary not only for the stable and efficient 
operation of grid but also for appropriately accommodating 
new industrial restructuring. Nowadays, as the electric 
power market experiences privatization and deregulation, 
accurate STLF has become a matter of common interest to 
market participants. In the near future, demand response 
will be available owing to technical improvements in 
metering and real-time communication. Tools such as 
advanced metering infrastructure (AMI) will help customers 
access time-varying electricity prices [1]. Thus, electric 
load forecasting will have a key role in electric market.  

Various models have been established for STLF over the 
course of several decades. Each model can be classified 
into three categories by their base method, statistical method, 
intelligent method and hybrid method. For statistical 
method, the regression method are quite common. To meet 
the specific purpose, improved regression algorithm, such 

as ARMA, ARIMA, have been presented [2-3] However, 
functional relationship between electric load and various 
weather variables or other social variables. Nowadays, the 
methods based on intelligence algorithm such as Artificial 
Neural Network, Fuzzy algorithm can be alternatives to 
overcome the finding function. They also flexible and 
robust for nonlinear problem. So, during recent decade, 
these methods are focused to solve nonlinear relationship 
between meteorological data and electric load data [4-7]. 
There are several hybrid method to complement the single 
algorithm model. [8-9] 

Electric load data are time series data that have a certain 
period. However, time series data are the sum of infor-
mation from various periods. The period for time series 
data consists of a weekly day-type pattern. Time series data 
also have a shorter-term pattern that comes from industrial 
load, and a longer-term pattern that comes from seasonal 
or weather changes. For this reason, it is helpful to analyze 
the origin of data after we divide the data into some 
frequencies. To express the data in the frequency domain, 
the Fourier transform is one of most popular methods. 
However, practical electric load data are nonstationary, so 
a Wavelet transform is more suitable than the Fourier 
transform. Many papers have been published that explore 
Wavelet decomposition. Most of these papers have featured 
an approach that uses artificial neural networks [4-7]. This 
approach showed relatively high accuracy compared to 
conventional forecasting methods [7].  

 
 

2. Wavelet Transform 
 
Using a wavelet means that certain seismic signals can 

be suitably modeled by combining translations and dilations 
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of a simple oscillatory function of finite duration [10]. 
Unlike trigonometric functions, this wave enables us to 
analyze a nonstationary signal using a pulse that is located 
in time and has finite energy that integrates to zero. 

 
2.1 Wavelet decomposition and reconstruction 

 
Wavelet decomposition is a method to gather information 

from the breaking up of a signal into shifted and scaled 
versions of the mother wavelet. As it travels, the original 
signal becomes a lower-resolution signal. There are two 
types of filters (low-pass and high-pass) that can decompose 
or reconstruct the signal. Both the low- and high-pass 
filters form a system. The original signal S is decomposed 
into details (abbreviated as D1) and approximations 
(abbreviated as A1) by going through each filter. The 
coefficient D1, obtained from the high-pass filter, contains 
a high-frequency component that describes the short-term 
period pattern. The other coefficient, A1, is obtained from 
the low-pass filter and contains a low-frequency component 
that describes the long-term period pattern. If the decom-
position level is two or higher, only an approximate 
coefficient is decomposed. The coefficient A1 is decom-
posed into A2 and D2. The next level of decomposition is 
achieved by repeating this sequence. The decomposition 
can continue only until the individual details consist of a 
single sample or pixel [11]. After this process is complete, 
the signal can be smoothed by eliminating the high 
frequency or by separating it into high frequency and low 
frequency. This is shown in Fig. 1. 

Wavelet-decomposed components can be reconstruct 
without loss of data. This process is called reconstruction, 
and the procedure is shown in Fig. 2. 

The major characteristic of reconstruction is that it can 
reconstruct the signal from the coefficients of the details 
and approximations. The original signal can be recon-

structed from the coefficient vectors of the approximations 
and details. During this process, reconstruction only needs 
coefficient vectors, which are produced by downsampling 
the length of the signal by half. Therefore, before recon-
struction, the coefficient should be modified by allocating 
zeros between samples.  

Using multiresolution analysis theory, a fast discrete 
wavelet transform known as the Mallat algorithm was 
developed. When the signal is decomposed, it uses different 
resolution levels.  

Fig. 1 shows this process using a signal that has been 
decomposed into three resolution levels. As shown in Fig. 
1, the Mallat algorithm focuses on a careful decomposition 
of the low-frequency space of the signal, resulting in better 
resolution in the low-frequency series. 

Compared with the original signal, the series decom-
posed by the Mallat algorithm shows a great reduction in 
the nonstationary characteristics. Because the series 
decomposed by wavelet decomposition is an approximate 
stationary series, wavelet decomposition is useful in 
improving the forecasting accuracy. 

A three-level wavelet transform can be divided into three 
details and three approximations, as seen below: 

 
S = A1 + D1 
 = A2 + D2 
 = A3 + D3 + D2 + D1 

 
2.2 Continuous and discrete wavelet transforms 

 
Wavelet Transform is consist of a continuous Wavelet 

and a discrete wavelet transform (DWT). W(a, b) of signal 
f(x), with respect to a mother wavelet f(x), is described as 
[12] 
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where a and b are real, and * denotes complex conjugation. 
The scale parameter a controls the spread of the wavelet, 
and translation parameter b determines its central position. 

The W(a, b) coefficient represents how well the original 
signal f(x) and the scaled / translated mother wavelet match. 
Thus, for all a, b associated with a particular signal, the 
set of all wavelet coefficients W(a, b) is the wavelet 
representation of the signal with respect to the mother 
wavelet. The CWT provides a redundant representation of 
the signal in the sense that the entire support of W(a, b) 
need not be used to recover f(t). Instead of using that 
approach, the mother wavelet can be scaled and translated 
using certain scales and positions usually based on powers 
of two. This is known as the DWT. This scheme is more 
efficient than, and is as accurate as, the CWT [10]. The 
DWT is described in the following equation: 
 

 
Fig. 1. Process of a signal being decomposed into three 

resolution levels. 

 
Fig. 2. Reconstruction tree of decomposed signal. 
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where a, b are same in (1) and can be expressed in m. In (2), 
k is an integer variable that refers to a particular point of 
the input signal, and n is the discrete time index. 

 
 
3. GMDH(Group Method of Data Handling) 

Algorithm 
 
The GMDH algorithm was first developed by A.G. 

Ivakhnenko. It is a heuristic self-organization method. 
The GMDH can formulate or identify a complex system 
without tracking the path of input-output. Generally, the 
relationship between inputs and output in a nonlinear 
function can be expressed by a complicated polynomial 
series in the form of the Volterra series:  
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The discrete form of (3) can be expressed by (4) named 

Kolmogorov-Gabor polynomial [13] 
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where x represents the input of the system, N is the number 
of inputs, and a represents coefficients. 

In the case of double variables and the quadratic form, 
(4) can be simplified by (5)[14] 

 
 2 2

0 1 2 3 4 5k i j i j i jy a a x a x a x x a x a x= + + + + +  (5) 
 
To obtain coefficient a, the algorithm follows this 

procedure. 

Step 1: Select m input variables affecting the output 
variable. If required, normalize input data. This 
input data calls x1, x2, …, xm. 

Step 2: Divide N input-output data (x1i, x2i,…, xni, yi, i = 1, 
2, …, N) into training data and testing data. N = 
Ntrain + Ntest 

Step 3: Select input data xp, xq among n input data. 
Establish double-variable, second-order partial 
descriptions (PD).  

       2 2
0 1 2 3 4 5k p q p q p qG a a x a x a x x a x a x= + + + + +  (6) 

 
where a0, a1,…, a5 are coefficients, and Gk is a 
intermediate-variables 

Step 4: Estimate coefficients a0, a1, …, a5, using linear 
regression and its input training data. Coefficients 
can be obtained by minimizing E in the equation 
(8).  
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Step 5: Using coefficients obtained from the previous 
step, calculate the square error EL. Among E1, 
E2,… En(n-1)/2, the lowest error E is assigned Ebest. 
If the polynomials and intermediate variables satisfy 
the condition Ebest ≤ Ec, terminate the algorithm, 
or arrange organized polynomials by error EL 
from lowest to highest. Select m polynomials in 
order of lowest error.  

Step 6: Using the selected polynomial in the previous step, 
construct the next layer using new input-output data, 
and repeat the process beginning with Step 3. 

 
This procedure can be shown as Fig. 3. 

 
Fig. 3. GMDH network. 

 
 

4. Case Study 
 

4.1 Electric load classification 
 
Before electric load forecast, electric load data has to be 

classified to their day-type. To do this, normally has been 
used calendar based method. However, electric load data 
does not always follows their day-type, it has possibility to 
obtain incorrect data with respect to their genuine day-type 
characteristic. To avoid error, this paper classified electric 
load data into seasonal and day-type using K-mean and k-
NN respectively.  

 
4.2 Electric load decomposition 

 
For our proposed approach, we selected the DWT with 
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Mallat method to perform the load decomposition. For 
basis function f(t), we selected Db1 (Daubechies wavelet 
of order 1). Some of the existing research with the wavelet 
transform in electric load forecasting and price forecasting 
usually used Db4 (Daubechies wavelet of order 4), but this 
approach was not appropriate for GMDH. Generally, 
GMDH has inputs at the utmost 2nd order polynomial, so it 
is better to fit the curve of the load as a square rather than 
as a quadratic or higher order curve.  

Fig. 4 shows different results of the three-layer wavelet 
decomposition using Db1 and Db4, respectively. In Fig. 4, 
we see that Db1 disassembles the original load into a 
suitable wave to be fit by lower order polynomials than 
Db4 does.  

 
4.3 Electric load forecasting and development of 

whole forecasting model 
 
GMDH has two input units, which describe the previous 

load and temperature trend by the hour. The layer is 
modeled to be created repeatedly, until there is no more 
improvement in the lowest error. Data groups utilize the 
previous 72 h, divided into 48 h of training data and 24 h 
of test data. Each model can have different numbers of 
layers, but the maximum number is set at 100. 

The variation of data structure of the proposed forecasting 
system is shown in Fig. 5. Before applying the wavelet 
transform, the electric load is classified by its day-type and 
seasonal type. We divide the electric data into four seasons 
commonly used and five day-types such as Monday, 
Weekdays, Saturday, Sunday, Special holiday. Each classified 
electric load is used to establish forecasting models except 
for special holiday(summer vacation, new year’s day, etc). 
The load is decomposed using the wavelet transform and 
is forecast using GMDH, Holt-Winters method, and an 

artificial neural network.  
 

4.4 Test and discussion 
 
Case studies for our proposed algorithm involved a one-

day-ahead forecasting of hourly electric loads using the 
data from 2008–2011. To compare our data with the data 
from other papers, we evaluated our results using the 
following indices: 

Mean Absolute Percentage Error(MAPE) 
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Standard deviation  
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To prove the validity of our proposed method, we 

compared our results with the same data from the 
applications of Holt-Winters multiplicative method and the 
artificial neural network. We found the smoothing constant 
α=0.5, β=1, γ=0.1 by increasing each value from 0.1 to 1. 
We selected the multilayer perceptron type with 26 input 
nodes, 2 layers(one of which is hidden) and 24 output 
neurons for Artificial Neural Network.[15] It was trained 
by back propagation algorithm, while the selected iteration 
tolerance after the error is less than 0.005. Table 1 shows 
day-ahead forecasting results, for each day types in MAPE. 
Table 2 lists the standard deviations and MAPE of the 
prediction errors, for each hour and for all types, in 2008 
and 2011.  

According to Table 1, for spring season forecasting, our 
proposed method improves the accuracy in MAPE 
difference over Holt-Winters, ANN by 1.592%, 0.312%, 
respectively, for summer season forecasting, by 1.191%, 
0.294%, respectively, for fall season forecasting, by 1.9%, 
0.317%, respectively, for winter season forecasting, by 
0.568%, 0.277%, respectively. For all day-types in each 

 
Fig. 4. Comparison of results using Db1 and Db4 

 
Fig. 5. Structure of overall forecasting system 

 
Fig. 6. Comparison of applying wavelet and non-wavelet 

forecasted 
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season, our proposed algorithm outperforms other methods.  
As shown in Table 2, for overall mean performance, our 

prosed method results in the lowest forecasting error but 
not in standard deviation. For all hourly data, it shows 
better performance than other two method. The results 

shows, it represent 53% and 23% higher accuracy with 
respect to other two algorithm. Most of all, we can find its 
competitive performance for peak load period(2-3P.M. in 
summer, 10A.M. in winter). Whereas, for all hourly results, 
our proposed method doesn’t show better performance than 
ANN in standard deviation. 

Two additional test cases — weekday data only (case 1) 
and weekend data included (case 2) — showed case 1 with 
0.96% and case 2 with 1.01%, respectively. There was not 
much of a difference. 

 
 

5. Conclusion 
 
This paper proposed a new algorithm using DWT and 

the GMDH algorithm. The forecasting was performed after 
we classified the electric loads by their day-type and 
seasonal type, using a data mining technique. Refined 
electric load data were decomposed into their frequency. 
We then used GMDH to perform load forecasting, and the 
data were reconstructed by using an inverted DWT.  

Regarding accuracy, our proposed algorithm showed a 
lower error rate over the tested period, not only in the 
comparison group but also in reference paper. Most of all, 
its accuracy for peak time was competitive. Whereas, it is 
necessary to improve in standard deviation. Including 
additional meteorological factors such as wind speed, solar 
irradiance, and rainfall rate can help to decrease the error 
rate.  
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