
S P E C I A L I S S U E

Deep compression of convolutional neural networks with
low‐rank approximation

Marcella Astrid1 | Seung-Ik Lee1,2

1Department of Computer Software,
University of Science and Technology,
Daejeon, Rep. of Korea.
2SW·Contents Research Laboratory,
Electronics and Telecommunications
Research Institute, Daejeon, Rep. of
Korea.

Correspondence
Seung-Ik Lee, SW·Contents Research
Laboratory, Electronics and
Telecommunications Research Institute
and Department of Computer Software,
University of Science and Technology,
Daejeon, Rep. of Korea.
Email: the_silee@etri.re.kr

Funding information
Institute for Information and
communications Technology Promotion
(IITP), Grant/Award Number: 2017-0-
00067; Institute for Information and
Communications Technology Promotion
(IITP) of the Korean government (MSIT),
Grant/Award Number: 2017-0-00067.

The application of deep neural networks (DNNs) to connect the world with cyber

physical systems (CPSs) has attracted much attention. However, DNNs require a

large amount of memory and computational cost, which hinders their use in the

relatively low‐end smart devices that are widely used in CPSs. In this paper, we

aim to determine whether DNNs can be efficiently deployed and operated in low‐
end smart devices. To do this, we develop a method to reduce the memory

requirement of DNNs and increase the inference speed, while maintaining the per-

formance (for example, accuracy) close to the original level. The parameters of

DNNs are decomposed using a hybrid of canonical polyadic–singular value

decomposition, approximated using a tensor power method, and fine‐tuned by

performing iterative one‐shot hybrid fine‐tuning to recover from a decreased accu-

racy. In this study, we evaluate our method on frequently used networks. We also

present results from extensive experiments on the effects of several fine‐tuning
methods, the importance of iterative fine‐tuning, and decomposition techniques.

We demonstrate the effectiveness of the proposed method by deploying com-

pressed networks in smartphones.

KEYWORD S

convolutional neural network, CP-decomposition, cyber physical system, model compression, singular

value decomposition, tensor power method

1 | INTRODUCTION

A cyber physical system (CPS) is an important technology
that helps to connect computational resources with the
physical world, in fields such as aerospace [1], healthcare
[2], and manufacturing [3], where an essential requirement
is to understand and interact with the world. However,
because of limited resources, particularly in low‐end
devices, the design of perception software for CPS devices
remains a major challenge.

Deep neural networks (DNNs) and convolutional neural
networks (CNNs) have successfully exhibited state‐of‐
the‐art performance in various applications utilized to

understand the world. For example, VGG [4] and Google-
Net [5] achieved a top‐five accuracy of more than 90%,
and AlexNet [6] achieved a top‐five accuracy of 80% in
ImageNet 1000 class classification [7]. In object detection
using the PASCAL VOC 2007 dataset, YOLOv2 [8]
achieved a rate of 78.6%, and SSD500 [9] achieved a rate
of 76.9%, which are much higher than those obtained for
non‐deep learning methods.

However, CNNs typically rely on a large number of
parameters and significant computational power. For exam-
ple, AlexNet requires 240 MB of memory for the parame-
ters, and more than 700 million float point operations for
just one inference. As such, it is not easy to implement

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2018 ETRI

Received: 19 February 2018 | Accepted: 3 May 2018

DOI: 10.4218/etrij.2018-0065

ETRI Journal. 2018;40(4):421–434. wileyonlinelibrary.com/journal/etrij | 421

http://orcid.org/0000-0003-1432-6661
http://orcid.org/0000-0003-1432-6661
http://orcid.org/0000-0003-1432-6661
http://orcid.org/0000-0003-2986-7540
http://orcid.org/0000-0003-2986-7540
http://orcid.org/0000-0003-2986-7540
http://www.kogl.or.kr/info/licenseTypeEn.do
http://www.wileyonlinelibrary.com/journal/etrij


CNNs in resource‐limited CPS devices, and they often can-
not be loaded into memory. Furthermore, as is typical with
small CPS devices, inference in a CNN becomes very slow,
and thus CPS systems cannot respond to or perceive the
world in a timely manner, which is demonstrated using
an autonomous driving car [10] that limits the speed to
72 km/h in order to reliably perceive objects 30 m away.

In this article, we aim to answer the following question:
Can we make CNNs smaller and faster than original net-
works for efficient operation in low‐end CPS devices? To
represent CNNs more efficiently, we use tensor decomposi-
tion, under the assumption that the original tensor should
have some degree of redundancy. Then, one question arises:
Do CNNs have redundancy in their tensors? As empirically
proven by Denil and others [11], a total of 95% of the CNN
weights can be predicted (that is, they are redundant) from
only the remaining 5% without a loss of accuracy.

However, using a tensor approximation for CNNs raises
a number of unique challenges. First, CNNs are typically
composed of many layers with their own set of parameters
or weights, which are called tensors in the deep‐learning
field. As we approximate the tensors of a CNN up through
the layers, approximation errors will accumulate, and this
error accumulation makes the CNN behave quite differently
compared to the original, uncompressed networks; this
eventually results in a significant drop in performance. This
type of instability was reported in [12] and [13].

Second, the aim is for the decomposition to be as com-
pact as possible while maintaining the performance close to
that of the original. Finally, a further practical consideration
is that the decomposition technique should be readily
implemented using widespread deep‐learning toolkits, such
as PyTorch [14], Tensorflow [15], and Caffe [16]; other-
wise, it should be implemented from scratch.

We address these challenges by developing a combina-
tion of canonical polyadic–singular value decomposition
(CP–SVD) and the tensor power method (TPM), as well as
a hybrid fine‐tuning method. CP–SVD decomposes convo-
lutional layers using CP‐decomposition as a linear combi-
nation of outer products of vectors, and decomposes the
fully connected layers using SVD. Then, using the TPM,
we estimated the value of each vector in the decomposi-
tion. A hybrid fine‐tuning method is proposed to train the
decomposed convolutional layers using iterative fine‐tun-
ing, whereas one‐shot fine‐tuning is used for fully con-
nected layers.

We evaluated our proposed method by decomposing
pre‐trained weights of several representative CNN net-
works, that is AlexNet [6], GoogleNet [5], and VGG16 [4],
and by deploying a decomposed network to Android smart-
phones to show its effectiveness in actual smart devices.
Our results demonstrate improvements in the compression
rate and speed from CP–SVD decomposition and TPM, as

well as iterative fine‐tuning, when compared with other
tensor decomposition approaches [12,13]. We also present
several issues, such as the importance of TPM and iterative
fine‐tuning or freezing strategies, which are naturally trea-
ted as decision points when dealing with decomposition.

2 | METHODOLOGY

CNNs typically have a sequence of convolutional layers
followed by fully connected layers at the end, as shown in
Figure 1. Given an input, a set of convolution filters (or
weights) was applied to produce feature maps. Each filter
strides across the spatial dimension, creating a linear combi-
nation of its weights and the input, and producing one feature
map (or channel) of the next layer. In this article, the focus
considered for decompression is the weights shown in Fig-
ure 1. The weights in convolutional layers are represented as
tensors, and the weights in FC layers are represented as
matrices. We treat the convolutional layers and FC layers dif-
ferently by applying CP‐decomposition for convolutional
layers and SVD [17] for FC layer weights.

2.1 | CP‐based tensor decomposition for
convolutional layers

CP‐decomposition decomposes a tensor as a linear combi-
nation of the outer products of vectors. Equation (1) shows
a three‐way tensor X decomposed by R number of compo-
nents, as visualized in Figure 2. The rank R is a key factor
of the compression rate, where a low R will lead to a
higher compression rate.

X �
XR
r¼1

ar
O

br
O

cr: (1)

A convolution operation with a convolution filter tensor K
of size T × S × (D × D) maps a three‐way input tensor X of
size S × W × H to a three‐way output tensor Y of size T ×

Channels

Height
Width

Convolutional 
layers weights

Fully-connected 
layers weights

…

… … …

- Cat
- Dog
- Car

- Zebra

…
…

FIGURE 1 Typical CNN architecture

≈ + + +…
a1 b1

c1

a2 b2

c2

aR bR

cR

FIGURE 2 CP‐decomposition of a three‐way tensor

422 | ASTRID AND LEE



W′ × H′, where S is the filter depth corresponding to the
number of input channels, D is the filter spatial size, H and W
represent input spatial dimensions, T is the number of filters,
and H′ and W′ are output spatial dimensions (2). Note that
for simplicity, we assume square filters and an odd D.

Y t;w0;h0 ¼
XS
s¼1

XD
j¼1

XD
i¼1
Kt;s;j;iX s;wj;hi;

wj ¼ðw0 � 1Þ�þ j� p; and hi ¼ ðh0 � 1Þ�þ i� p

(2)

where Δ is the stride and p is zero‐padding.
With this setting, we want to approximate the filter ten-

sor K through CP‐decomposition assuming that rank R is
given in (3). Note that we do not decompose the spatial
dimensions because they are usually small enough, for
example, 3 × 3 and 5 × 5.

Kt;s;j;i ¼
XR
r¼1
KS

r;sKDD
r;j;iKT

t;r (3)

where KS, KDD, and KT are the three components of
a decomposition representing tensors of sizes R × S,
R × (D × D), and T × R, respectively.

Substituting (3) into (2), we obtain (4) and (5), which
indicate how the original convolution operation can be
approximated through three consecutive convolutions. First,
input X is convolved with filter KS (6), giving an intermedi-
ate result Z. This Z is convolved with filter KDD (7), produc-
ing another intermediate result, Z′. Finally, Z′ is convolved
with filter KT (8), and we obtain the intended output Y. As a
result, the original convolution is converted into three small
convolution operations, as illustrated in Figure 3B.

Yt;w0;h0 ¼
XS
s¼1

XD
j¼1

XD
i¼1

XR
r¼1
KS

r;sKDD
r;j;iKT

t;rX s;wj;hi; (4)

Yt;w0;h0 ¼
XR
r¼1
KT

t;r

XD
j¼1

XD
i¼1

KDD
r;j;i

XS
s¼1
KS

r;sX s;wj;hi

 ! !
; (5)

Zr;w;h ¼
XS
s¼1
KS

r;sX s;w;h (6)

where KS is a tensor of size R × S × 1 × 1, and Z of size
R × W × H.

Z0r;w0;h0 ¼
XD
j¼1

XD
i¼1
KDD

r;j;iZr;wj;hi (7)

where KDD is a tensor of size R × 1 × D × D, and Z0 of
size R × W′ × H′.

Yt;w0;h0 ¼
XR
r¼1
KT

t;rZ0r;w0;h0 (8)

where KT is a tensor of size T × R × 1 × 1.
In addition, as the convolution operation for a CNN

input usually has a small filter depth S (it is typically
S = 3 for RGB image channels), we combine the filter
depth and spatial dimensions of the first convolutional
layer into a two‐way tensor KSDD of size T × (S × D × D),
as shown in Figure 3C, resulting in (9).

Kt;s;j;i ¼
XR
r¼1
KSDD

r;s;j;iKT
t;r: (9)

Substituting (9) into (2), we obtain (10), which is again
separated into two sequential operations, as follows:

Yt;w0;h0 ¼
XR
r¼1
KT

t;r

XD
j¼1

XD
i¼1

XS
s¼1
KSDD

r;s;j;iX s;wj;hi

 !
; (10)

Zr;w0;h0 ¼
XD
j¼1

XD
i¼1

XS
s¼1
KSDD

r;s;j;iX s;wj;hi (11)

where Z has size R × W′ × H′, and KSDD has size R ×
S × D × D.

Yt;w0;h0 ¼
XR
r¼1
KT

t;rZr;w0;h0 (12)

where KT has size T × R × 1 × 1.
Note that the method used to decompose the tensors

allows the decomposed results to be seamlessly supported
by the most popular deep‐learning toolkits such as PyTorch
[14], Tensorflow [15], and Caffe [16], because the results
are only composed of a series of convolution operations
and densely decomposed tensors that are very well sup-
ported in the toolkits. However, if the results consisted of
other kinds of non‐convolutional operations or sparse ten-
sors, it would not be well supported by the toolkits.

D
D

(D)

(B)

(A) 

W W(2)
Filter size: T × S × D × D Filter size: R × S × D × D

H H

S T

D
D

W W W

H HH

S
R T

Filter size: R × S × 1 × 1

T × R× 1 × 1

R × 1 × D × D T × R × 1 × 1
(6) (8)W W W W

H H
H H

S R
R T

(7)

W W W W W

H

S

H

R

H

R

H
H

TR
(7)

Filter size: R × S × 1 × 1 R × 1 × D × 1 R × 1 × 1 × D T × R × 1 × 1

(C)

D
D

D
D D

FIGURE 3 Convolutional layer compression as two‐, three‐, and
four‐way tensors: (A) original convolution, (B) 3‐way, (c) 2‐way, and
(D) 4‐way

ASTRID AND LEE | 423



2.2 | Fully connected layer decomposition

As is typical with CNNs, the convolutional layers are fol-
lowed by fully connected layers. An FC layer is described
in 13), where x is an input vector of size M, y is an output
vector of size N, and W is a weight matrix of size M × N.

yT ¼ xTW: (13)

Because the weights can be represented using a matrix,
we propose the use of an SVD technique for fully con-
nected layers instead of CP‐decomposition. With SVD, a
matrix W can be decomposed into three small matrices U,
D, and VT with sizes M × R, R × R, and R × N, respec-
tively, where U is a left singular matrix, D is a diagonal
singular value matrix, and V is a right singular matrix.

W ¼ UDVT ¼ ðUDÞVT: (14)

Combining (14) into (13) gives us (15), which can then
be separated into (16) and (17), meaning that one FC layer
can be decomposed into two layers having sizes M × R
and R × N, with z as an intermediate layer of size R.

yT ¼ ðxTðUDÞÞVT; (15)

zT ¼ xTðUDÞ; (16)

yT ¼ zTVT: (17)

2.3 | Theoretical complexity analysis

The original convolution operation (2) and FC layer (13)
require TSD2 and MN memory with computational costs of
O(T × S × D2 × W′ × H′) and O(MN), respectively. After
decomposition, the memory compression ratio E and
speed‐up ratio C of the convolutional layer are given by

E ¼ TSD2

RSþ RD2 þ TR
; (18)

C ¼ TSD2W 0H0

RSWH þ RD2W 0H0 þ TRW 0H0
: (19)

For an FC layer, they are

E ¼ C ¼ MN
MRþ RN

: (20)

2.4 | Computation of tensor decomposition

For tensor approximation, we require an optimization to
minimize the difference between the approximated tensor

(decomposed) and the target tensor (original). We used the
TPM, which can generally approximate tensors better with
a lower rank [18].

As explained in Algorithm 1, given a rank R, the TPM
approximates a tensor W by iteratively adding components
(one outer product of the vectors). Each component ar ⨂
br ⨂ cr approximates the residual of previous decomposition
components bW (Algorithm 1(2c)) by minimizing the error
k bW � ar

N
br
N

crk2 using a coordinate‐descent algorithm
(Algorithm 1 (2a loop)). During each iteration, the TPM
updates one vector while keeping the other vectors unchanged,
which is a variant of the coordinate descent that updates a vec-
tor (>1 element) instead of a coordinate (1 element).

2.5 | Rank selection

Thus far, we have assumed that the rank R for decomposition
is given. In fact, the rank significantly affects the overall
compression rate and performance. However, an algorithm
that can find the optimal tensor rank has yet to be developed;
rather, it is NP‐hard [19]. In this subsection, we propose the
use of a sensitivity‐based rank‐selection method.

First, we define the sensitivity of a layer as its respon-
siveness to decomposition. We measure the sensitivity
based on the decrease in accuracy caused by the layer
decomposition. If a layer has high sensitivity, it will not be
desirable to set the rank too low, and vice versa.

To be more specific, we measured the accuracy drop of
a layer by decomposing it while maintaining the other lay-
ers and fine‐tuning the whole network for only one epoch
in order to obtain the accuracy loss caused from the layer's
decomposition. We repeated this process for each layer in
a CNN with the same rank, allowing them to be compared
with each other. Finally, the rank for each layer is deter-
mined proportionally to the accuracy loss ratio. However,
because we only know the ratio, the average rank for all
layers still needs to be arbitrarily chosen.

Algorithm 1. Tensor Power Method [18].

1) Initialize bW ¼ W.
2) For k = 1, … , R

a) Repeat for N iterations:
i) ak  bW � 2bk � 3ck=k bW � 2bk � 3ckk2
ii) bk  bW � 1ak � 3ck=k bW �1ak � 3ckk2
iii) ck  bW � 1ak � 2bk=k bW � 1ak � 2bkk2

b) dk  bW � 1ak � 2bk � 3ck
c) bW  bW � dkak

N
bk
N

ck

2.6 | Hybrid fine‐tuning
Decomposing multiple convolution layers using CP‐decom-
position will usually end in an unrecoverable drop in accu-
racy, which appears to be caused by CP instability, as

424 | ASTRID AND LEE



reported in [12] and [13]. We adopt iterative fine‐tuning
[20] to overcome the instability problem, but only to con-
volutional layers. With iterative fine‐tuning, we fine‐tune
the whole network whenever each layer is decomposed.
The idea behind the iteration is as follows: Decomposing a
layer will inevitably result in an error or drop in accuracy
arising from approximating the original tensor. When we
decompose multiple layers, too many errors will be accu-
mulated to be recovered by the so‐called one‐shot fine‐tun-
ing at the end of the process, which is a typical approach,
as described in [12] and [21]. However, with iterative fine‐
tuning, we expect that the total number of errors will be
kept from becoming too large to be recovered. The proce-
dure is illustrated in Figure 4.

Note that the iterative fine‐tuning process applies only
to convolution layer decomposition. For FC layers, we pro-
pose the use of one‐shot fine‐tuning to speed up the train-
ing time and prevent a loss of accuracy. In one‐shot fine‐
tuning, all FC layers are decomposed first, and then fine‐
tuned once.

2.7 | Method summary

A summary of the method is shown in Algorithm 2.

Algorithm 2. Overall method.

1) Read network net = pretrained_weight.
2) Rank selection

a) r_sensitivity = a small rank (we use 10 for
AlexNet and 20 for GoogleNet and VGG16)

b) r_ave = arbitrary rank for average
i) net templ = decompose layerl with rank

r_sensitivity
ii) net templ = 1 epoch fine-tuning of net templ
iii) sensitivityl = top-5 loss of net templ

c) For layer l = 1 … L:
d) Decide arbitrary average rank r_ave
e) For layer l = 1 … L:
i) rankl ¼ sensitivitylPL

m¼1 sensitivitym
r ave � L

3) All-layer decomposition
a) For layer l = 1 … L:
i) If layerl is convolutional:

A) net = decompose layerl with rankl from net
B) net = fine-tune net

ii) Else:
A) While layerl is fully connected,

I) net = decompose layerl with rankl
II) Go to next layer l = l + 1

B) net = fine-tuning net
C) Break if l > L

3 | EXPERIMENTS

Throughout the experiments, we first aim to answer the
motivational question:

Q1: can CNNs be efficiently decomposed and imple-
mented seamlessly in deep learning toolkits? We
answered this question by applying the proposed method to
representative CNNs such as AlexNet, GoogleNet, and
VGG16, and then by deploying the decomposed network
to an Android smartphone. In addition to the motivating
question, we also try to answer several additional questions
that arose during the development of the method:

Q2: Do the successful results (not yet shown) come
from either the TPM or iterative fine-tuning, or from
both? To answer this question, we conducted an ablation
study instantiating each component separately (Sec-
tion 3.4).

Q3: What is the best strategy for layer freezing when
we apply iterative fine-tuning? In other words, do we
need to freeze the already fine‐tuned layers or fine‐tune
them altogether without freezing (Section 3.5)?

Q4: Do we need to decompose spatial dimensions
and input channels despite the small dimensions and
number of channels (Section 3.6)?

Q5: Instead of sensitivity-based rank selection, what
would happen if we simply assign ranks proportional to
the number of parameters (Section 3.7)?

Throughout the experiments, we used the Caffe [16]
framework to read the pre‐trained weights and for fine‐tun-
ing, and R software for decomposition. An accuracy evalu-
ation and fine‐tuning was conducted using the ImageNet
2012 dataset [7], which classifies 1,000 classes and has 1.2
million sets of training data and 50 thousand sets of vali-
dation data. Because there is no label in the testing data,
the accuracy is measured using the validation data. A
Linux machine with a 3.50 GHz Intel(R) Core(TM) i7‐
5930K CPU and 64 GB of RAM was used for the experi-
ments.

Layer_1

Layer_2

Layer_n

Layer_1a

Layer_1b

Layer_2

Layer_n

Layer_1a

Layer_1b

Layer_n

Layer_2a

Layer_2b

Layer_2c

Layer_1a

Layer_1b

Layer_2a

Layer_2b

Layer_2c

Layer_na

Layer_nb

Fi
ne

-tu
ni

ng

Step 1 Step 2 Step nOriginal network

Layer_nc

Fi
ne

-tu
ni

ng

Fi
ne

-tu
ni

ng

FIGURE 4 Iterative decomposition and fine‐tuning

ASTRID AND LEE | 425



3.1 | Models

We show the method's generalization by applying it to
three of the most popular CNN architectures: AlexNet,
GoogleNet, and VGG16. AlexNet [6] consists of five con-
volutional layers and three FC layers, which cover around
61 million weights and 724 million floating‐point computa-
tions for each image inference. We applied three‐way
decomposition to the convolutional layers, except for the
conv1 layer, which uses two‐way decomposition.

With GoogleNet [5], we applied our method to 3 × 3
convolution layers inside the inception modules, and to
convolutional layers outside the inception modules (conv1
and conv2). Of the several filters in the inception module,
we only decomposed the 3 × 3 filters because they are the
most computationally‐intensive filters, accounting for more
than 50% of the calculations. In addition, we also decom-
posed filters outside the inception modules: conv1 and con-
v2. Consequently, 3 million weights are decomposed out
of almost 7 million weights in total, with a computational
cost of 1 billion from 1.6 billion.

VGG16 [4] consists of 13 convolutional layers and
three FC layers. Each convolutional layer has 3 × 3 filters
with a stride of 1, and with additional padding in each
input spatial dimension. Further, VGG16 has 138 million
weights and 15 trillion computations for one image infer-
ence. VGG16 is fine‐tuned iteratively for every four layers
up to layer 8, that is, all four layers are fine‐tuned together
to speed up the training, and layers 9 through 12 are fine‐
tuned every two layers for accuracy. Refer to the Appen-
dices for further details.

3.2 | All‐layer decomposition

This section shows the results of the all‐layer decomposition
of AlexNet, GoogleNet, and VGG16, as summarized in

Table 1, with the ranks selected based on sensitivity, as
shown in Table 2, and training hyperparameters shown in
Table 3. With AlexNet, our approach shows a × 7.06 param-
eter and ×5.13 theoretical cost reduction, with a × 3.48
speed up for one inference. Our method outperforms Tucker
in terms of accuracy, cost, and CPU time. Note that the theo-
retical computational reduction (×5.13) and CPU time
(×3.48) do not match because the CPU time contains all boil-
erplate processing steps for inference, for example, loading
the input, transformation, pooling, and activation functions,
whereas the theoretical cost only considers the convolution
operation.

In the case of GoogleNet, the results are not very distinct.
This is because GoogleNet has much fewer parameters such
that although they are still improved, there is not much room
for decomposition. In VGG16, our overall approach again
outperforms Tucker [12], except that in this case, we have a
relatively high accuracy drop. This is because the iterative
fine‐tuning was applied once every four or two layers to fas-
ten the training time. However, it still demonstrates that our
hybrid fine‐tuning is successful in restoring the accuracy in
very deep networks with much fewer weights.

3.3 | Fully connected layer decomposition

In contrast to a previous work [20] that applied iterative
fine‐tuning even to the FC layers, we demonstrate that one‐
shot fine‐tuning shows better results with respect to FC
layers, as illustrated in Figure 5.

3.4 | Importance of TPM and iterative fine‐
tuning

To answer question Q2, we performed an ablation study by
instantiating them separately during AlexNet compression.
More specifically, we decomposed AlexNet with either

TABLE 1 All‐layer decomposition results

Network Method Top‐1 acc. Top‐5 acc. Weights Theory cost CPU time (ms)

AlexNet Original 56.83 79.95 61.0M 724M 167.71

Tucker [12] N/A 78.33 (–1.70) 11.2M (×5.46) 272M (×2.67) 80.60 (×2.08)

CP‐sensitivity
(Ave rank: conv 150, FC 300)

55.08 (–1.75) 79.05 (–0.90) 8.7M (×6.98) 205M (×3.53) 53.79 (×3.12)

CP‐sensitivity
(Ave rank: conv 100, FC 300)

54.43 (–2.4) 78.15 (–1.80) 8.6M (×7.06) 141M (×5.13) 48.21 (×3.48)

GoogleNet Original 68.93 89.14 7.0M 1,583M 211.73

Tucker [12] N/A 88.66 (–0.24) 4.7M (×1.49) 760M (×2.08) 183.17 (×1.16)

CP‐sensitivity (Ave rank: conv 35) 67.30 (–1.63) 88.08 (–1.06) 4.0M (×1.74) 659M (×2.40) 155.62 (×1.36)

VGG16 Original 68.36 88.44 138M 15,470M 1,568.33

Tucker [12] N/A 89.40 (–0.50) 127M (×1.09) 3,139M (×4.93) 1,439.07 (×1.09)

CP‐sensitivity (Ave rank: conv 80, FC 150) 63.38 (–4.98) 85.45 (–2.99) 7.4M (×18.80) 1,600M (×9.67) 576.74 (×2.72)

426 | ASTRID AND LEE



TPM and one‐shot fine‐tuning (disabling iterative fine‐tun-
ing) or random and iterative fine‐tuning (disabling TPM),
under an average rank of 150.

3.4.1 | TPM and one‐shot fine‐tuning
To determine the importance of iterative fine‐tuning, we per-
formed one‐shot fine‐tuning instead of iterative fine‐tuning.
The hyperparameters for one‐shot fine‐tuning are the same as
AlexNet‐others (Table 3). Figure 6 shows that the TPM

combined with one‐shot fine‐tuning cannot recover the lost
accuracy, which reaches almost a random guess. In contrast,
the TPM combined with iterative fine‐tuning (in both the con-
volution and FC layers) is able to recover the lost accuracy.

3.4.2 | Random and iterative fine‐tuning
The effectiveness of iterative fine‐tuning raises another
question regarding the actual effect of the TPM on the
results. This question naturally arises when the accuracy of

TABLE 2 Sensitivity‐based ranks

Alexnet

Convolutional layers

Layer Conv1 Conv2 Conv3 Conv4 Conv5 Total

Top‐5 loss 5.38 11.89 11.86 13.68 15.17 57.98

Rank Ave = 150 69 154 153 178 196 750

Ave = 100 47 102 103 118 130 500

FC layers

Layer FC6 FC7 FC8 Total

Top‐5 loss 28.59 21.50 20.31 70.40

Rank Ave = 300 365 275 260 900

GoogleNet Layer Conv1 Conv2 i3a i3b i4a i4b

Top‐5 loss 7.12 8.35 7.18 7.77 6.78 6.97

Rank Ave = 35 35 41 35 38 33 34

Layer i4c i4d i4e i5a i5b Total

Top‐5 loss 7.08 6.63 6.59 7.41 7.10 78.98

Rank Ave = 35 34 32 32 36 35 385

VGG16

Convolutional layers

Layer Conv1_1 Conv1_2 Conv2_1 Conv2_2 Conv3_1 Conv3_2 Conv3_3

Top‐5 loss 4.71 4.04 4.12 6.00 9.25 5.27 5.11

Rank Ave = 80 59 50 51 75 115 65 64

Layer Conv4_1 Conv4_2 Conv4_3 Conv5_1 Conv5_2 Conv5_3 Total

Top‐5 loss 6.25 6.39 7.37 7.98 8.82 8.22 83.53

Rank Ave = 80 78 80 92 99 110 102 1,040

FC layers

Layer FC6 FC7 FC8 Total

Top‐5 loss 12.46 11.11 10.93 34.50

Rank Ave = 150 162 145 143 450

TABLE 3 Training hyperparameters

Network Layer Init LR Batch size Weight decay LR decay
#Epoch
(each iteration) Momentum

AlexNet
Conv1&2 0.001 128

0.0005 LR*0.1 every 5 epochs 15 0.9
Others 0.002 32

GoogleNet All
0.001

64

VGG16 All 32

ASTRID AND LEE | 427



a decomposed layer drops close to a random guess (0.5%
of the top‐5 accuracy). To determine the importance of the
TPM, we used random values for CP‐decomposition
instead of TPM values, with all other settings remaining
the same.

As shown in Figure 7, until the conv4 layer, the random
CP decomposition appears to rise above the random guess
level (0.5% top‐five accuracy), although the accuracy is
obviously lower than the TPM. However, as the decompo-
sition progresses to conv5 and beyond, a random decompo-
sition fails to recover the accuracy. This means that
although iterative fine‐tuning helps to recover the accuracy,
the optimization technique in CP also plays an important
role in such a recovery.

3.5 | Freezing

One understated issue that accompanies fine‐tuning is
whether to freeze the layers, that is, whether to keep some
layer weights fixed during fine‐tuning. Without freezing,

all layers are adjusted together with the newly decomposed
layer. In this work, we applied three different freezing
schemes: (a) non‐freezing, (b) semi‐freezing, which freezes
only the already‐decomposed and fine‐tuned layers, and (c)
freezing all other layers except the currently decomposed
layer. These freezing schemes are applied to decompose
AlexNet. As shown in Figure 8, the non‐freezing scheme
provides the best accuracy compared to the others.

3.6 | Conv1 spatial and input channel
compression

In this section, we address question Q4 to determine the
need to decompose small dimensions, such as spatial
dimensions and an input channel. We empirically show the
effects of the dimensions on the accuracy and compression
rate in conv1 (D = 11 and input channels S = 3) of Alex-
Net with three kinds of rank, R = 25, R = 50, and
R = 100. Here, we tested three cases: (1) two‐way decom-
position without an input channel or spatial decomposition,
(2) three‐way decomposition without spatial decomposition,
and (3) four‐way decomposition with both an input channel
and spatial decomposition, as shown in Figure 3.

As shown in Figure 9, all cases show almost the same
level of accuracy regardless of the manner of decomposi-
tion, although three‐way decomposition is observed to be
the best. With respect to the computational cost and mem-
ory, as shown in Figure 10, two‐way decomposition has
the highest cost. However, two‐way decomposition shows
the best actual CPU time, with three‐way decomposition

78.53

77.99

79.05

80.0
To

p-
5 

ac
cu

ra
cy

 (%
)

79.5

79.0

78.5

78.0

77.5

Iterative fine-tuned FC
One-shot fine-tuned FC
Original (79.95)

79.05

78.53

77.99 78.15

CP 150-300 CP 100-300

FIGURE 5 Comparison of iterative and one‐shot FC training
results

To
p-

5 
ac

cu
ra

cy
 (%

)

81

2

0

65

67

69

71

75

77

79

73

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Epoch

Iterative fine tuning (last iteration) One shot

FIGURE 6 Accuracy of last iteration of iterative fine‐tuning and
one‐shot fine‐tuning

To
p-

5 
ac

cu
ra

cy
 (%

)

80.0

1.0

0.5

76.5

77.0

77.5

78.5

79.0

79.5

78.0

Fine-tuning iteration

Original (79.95)

Conv1
0

TPM Random

Conv2 Conv3 Conv4 Conv5

79.92
79.73

79.17 79.09
79.3079.81

77.68
77.44

76.75

0.50

FIGURE 7 Accuracy of TPM and random initialization with
iterative fine‐tuning

428 | ASTRID AND LEE



having an exceptionally high CPU time. One possible reason
for this is the way that the deep‐learning toolkit (in our case,
Caffe) implements the convolution by first transforming the
n‐way tensor (namely, the input feature map) into a matrix.
The transformation incurs a rearrangement of the tensor, and
this overhead can cancel out the speed‐up realized from the
decomposition, particularly when the input channel size is
much smaller than the rank, just as the case of conv1 shown
in Figure 9 (also detailed in the Appendices).

3.7 | Rank‐selection comparison

For question Q5, this section empirically demonstrates that
the sensitivity‐based rank‐selection scheme outperforms the
baseline for which we use the parameter‐based rank‐selec-
tion scheme. The parameter‐based rank‐selection method
uses the parameter (weights) ratio, because intuitively, ten-
sors with fewer parameters are expected to be decomposed
with fewer parameters.

To compare the two schemes, we decomposed all con-
volutional layers of AlexNet with three‐way decomposition.
Figure 11 shows that sensitivity‐based rank selection is

superior to parameter‐based rank selection in terms of both
compression and computation.

3.8 | Installation on android smartphones

The motivation for compression is to enable CNNs to oper-
ate on different devices, such as mobile phones. We
installed the networks shown in Table 1 on a Nexus 5
phone with Android version 6.0.1 and 2 GB of RAM. We
used Caffe‐Android‐Lib [22] for CNN instantiation in
smartphones.

Table 4 shows the cost analysis results of an Android
application. The load time indicates for how long the
weight file is loaded into the application. The forward time
indicates how long each feed forward is run, in millisec-
onds. The startup memory is the memory consumption
before a feed forward, while the running memory is the
memory consumption during a feed forward. Both are mea-
sured in MB. Overall, the decomposed networks outper-
form their respective original networks in terms of both
weight and computational time. It should be noted that
even the original VGG16 cannot be loaded into the device
in contrast to the decomposed version.

4 | RELATED WORKS

Similar to our method, several low‐rank‐based tensor
decomposition approaches have been proposed
[12,13,20,21]. As with our method, Lebedev and others
[13] uses CP‐decomposition and a non‐linear optimization
technique, which is called nonlinear least squares (NLS).
Our approach is different in that we used a greedy opti-
mization, the TPM. However, they were not successful in
compressing all layers in a deep network. Lebedev and
others [13] does not combine any dimensions, and there-
fore a 4D layer is decomposed into four layers. Our

80
To

p-
5 

ac
cu

ra
cy

 (%
)

79

78

Top-5 acuracy

79.05

Non-freezing

77

76

75

Original (79.95)

Semi-freezing Freezing

78.48

76.28

FIGURE 8 Top‐5 accuracy with various freezing schemes

25 50 100
Rank

79.5

N
N

80.5

Input channel & spatial compression (conv1)

To
p-

5 
ac

cu
ra

cy
 (%

)

80.0

Original (79.95)

79.81

25 50 100
Rank

No input channel and spatial decomposition (2-way)

No spatial decomposition (3-way)

Input channel and spatial decomposition (4-way)

80.20 80.20

79.79

80.10 80.12

79.61

79.94 80.00

FIGURE 9 Comparison of accuracy of two‐, three‐, and four‐
way decomposition in conv1 layer

Weight  Cost CPU
time

Weight Cost CPU
time

Weight Cost CPU
time

R=25 R=50 R=100

900%

Input channel & spatial compression (conv1)

Pr
op

or
tio

n 
to

 o
rig

in
al

Weight

No input channel and spatial decomposition (2-way)
No spatial decomposition (3-way)
Input channel and spatial decomposition (4-way)

32
.9

3%

800%
700%
600%
500%
400%
300%
200%
100%

0%
Cost CPU

time
R = 25

Weight Cost CPU
time

R = 50

Weight Cost CPU
time

R = 100

15
.7

8%
8.

68
%

32
.9

3%
19

.1
4%

14
.4

6%
58

.5
0% 20

8.
41

%
95

.7
4%

65
.8

6%
31

.5
7 %

17
.3

6%
65

.8
6%

38
.2

7 %
28

.9
2%

71
.7

3%
16

9.
88

%

790.06% 789.19%

13
1.

71
%

63
.1

3%
34

.7
2 %

13
1.

71
%

76
.5

5 %
57

.8
4%

12
4.

65
% 33
6.

49
%

FIGURE 10 Weights, computational cost, and CPU time of
two‐, three‐, and four‐way decomposition

ASTRID AND LEE | 429



method combines spatial dimensions because the spatial D
dimensions in convolution kernels are typically very small
(for example, 3 × 3 or 5 × 5), and thus maintaining the
original does not make a noticeable difference. Kim and
others [12] applied Tucker decomposition, and Wang and
Cheng [21] applied block‐term decomposition to decom-
pose CNNs. However, because of the existence of a core

tensor, Tucker‐based approaches generally result in less
compression than the CP approach.

CP‐decomposition does not have a core tensor, and thus
is expected to have a more compressed representation for
the original tensors. However, as reported by Lebedev and
others [13], it also has a critical drawback, namely the CP
instability [12,13,23], which we believe prevents all‐layer
decomposition. Zhang and others [24] utilized matrix fac-
torization, which is also a low‐rank approximation, but
considers the weights as a two‐way tensor.

In addition to tensor decomposition approaches, there
are various approaches to compressing CNNs. Pruning
less‐important weights is applied by Han and others [25].
Rastegari and others [26] uses a more extreme quantization
by changing the weights to binary. Han and others [27]
combines pruning, scalar quantization, and encoding in a
single technique called deep compression. Yoon and
Hwang [28] enforce sparsity on the filter through regular-
ization. Chen and others also explored the frequency
domain for compression [29]. However, all of these meth-
ods are more complex when implemented using standard
deep‐learning tools, which was actually the reason why we
did not choose them as candidates for our approach.

Parallel to existing compression networks, several compact
networks have been made from scratch. SqueezeNet [30]
achieves AlexNet level accuracy on ImageNet with 50 times
less parameters. MobileNets [31] and Xception [32] are used
to create small networks based on a depth‐wise separable con-
volution. Although the building of a new network from
scratch in this manner has shown good results, it cannot be
directly used for already existing and trained networks. Con-
sidering that researchers are currently reusing pre‐existing net-
works at an increasing rate, decomposition approaches such
as ours are expected to become more important.

5 | CONCLUSION

In this paper, we presented a method for decomposing
DNNs. The method decomposes an entire network using a
CP–SVD hybrid, optimizes the decomposition using the

79.95
79.34

78.67
78.47

76.27

76.0
76.5
77.0
77.5
78.0
78.5
79.0
79.5
80.0

1.00 1.01 1.02 1.03 1.04

To
p-

5 
ac

cu
ra

cy
 (%

)

Weights reduction rate ( )

Rank selection method comparison
(conv only)

Original Sensitivity Parameter

79.95

79.34
78.67

78.47

76.27

76.0
76.5
77.0
77.5
78.0
78.5
79.0
79.5
80.0

1 2 3 4 5 6

To
p-

5 
ac

cu
ra

cy
 (%

)

Cost reduction rate ( )

Rank selection method comparison
(conv only)

Original Sensitivity Parameter

R = 100
R = 150

R = 150

R = 100

R = 100
R = 150

R = 150

R = 100

(A)

(B)

FIGURE 11 Top‐five accuracy and (A) weight and (B)
computation cost reduction rates of sensitivity and parameter rank‐
selection methods

TABLE 4 Compression results in Android smartphone deployment

Network Method Loading time Forward time
Startup
memory

Running
memory

AlexNet Original 3,904.40 2,309.70 259 314

CP‐sensitivity (Ave rank: conv 150, FC 300) 903.40 (×4.32) 1,041.92 (×2.22) 60 (×4.32) 128 (×2.45)

CP‐sensitivity (Ave rank: conv 100, FC 300) 886.81 (×4.40) 955.32 (×2.42) 60 (×4.32) 100 (×3.14)

GoogleNet Original 1,595.32 3,333.15 45 157

CP‐sensitivity (Ave rank: conv 35) 512.49 (×3.11) 1,978.62 (×1.68) 42 (×1.07) 143 (×1.10)

VGG16 Original Cannot be loaded

CP‐sensitivity (Ave rank: conv 80, FC 150) 338.49 3,007.79 57 385

430 | ASTRID AND LEE



TPM, and fine‐tunes the network using a hybrid of iterative
and one‐shot fine‐tuning. By applying the approach to sev-
eral representative CNNs such as AlexNet, GoogleNet, and
VGG16, we showed that such an approach is generic. We
also described extensive experiments conducted to answer
several issues regarding rank selection, weight freezing,
channel and spatial dimension decomposition, and the
importance of both the TPM and iterative fine‐tuning in the
use of all‐layer decomposition.

Our proposed method has several advantages. In con-
trast to other CP‐based approaches, it can be used for all‐
layer decomposition. It also has a higher reduction in
weights and less computational cost than other low‐rank
approximation methods, such as Tucker. The final point,
which is one of practical importance, is that the proposed
method can be seamlessly supported by all popular deep‐
learning toolkits such as PyTorch, Tensorflow, and Caffe.

In addition to such advantages, we hope that these
extensive experiments can be used as guidelines for the
various decision points that will also be encountered by
practitioners or researchers who are interested in making
large networks as compact as possible. As future work, we
hope to explore a more systematic method for determining
the ranks for decomposition. Although sensitivity‐based
rank selection has been empirically proven to work well,
arbitrariness remains when determining the average rank.

ACKNOWLEDGEMENTS

This work was supported by the Institute for Information
and Communications Technology Promotion (IITP) of the
Korean government (MSIT) (No. 2017‐0‐00067, Develop-
ment of ICT Core Technologies for Safe Unmanned Vehi-
cles).

ORCID

Marcella Astrid http://orcid.org/0000-0003-1432-6661
Seung-Ik Lee http://orcid.org/0000-0003-2986-7540

REFERENCES

1. L. Zhang, Multi-view approach to specify and model aerospace
cyber-physical systems, Int. Conf. Autom. Comput. (ICAC), Lon-
don, UK, Sept. 13–14, 2013, pp. 1–6.

2. S. A. Haque, S. M. Aziz, and M. Rahman, Review of cyber‐physi-
cal system in healthcare, Int. J. Distrib. Sens. Netw. 10 (2014),
no. 4, 217–415.

3. L. Monostori et al., Cyber‐physical systems in manufacturing,
CIRP Ann.‐Manuf. Technol. 65 (2016), no. 2, 621–641.

4. K. Simonyan and A. Zisserman, Very deep convolutional net-
works for large-scale image recognition, 2014, arXiv preprint
arXiv: 1409.1556.

5. C. Szegedy et al., Going deeper with convolutions, IEEE Conf.
Comput. Vision Pattern Recog. Boston, MA, USA, June 7–12,
2015, pp. 1–9.

6. A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classifi-
cation with deep convolutional neural networks, Adv. Neural
Inform. Process. Syst., Lake Tahoe, NV, USA, Dec. 3–8, 2012,
pp. 1097–1105.

7. O. Russakovsky et al., ImageNet large scale visual recognition
challenge, Int. J. Comput. Vision 115 (2015), no. 3, 211–252.

8. J. Redmon and A. Farhadi, YOLO9000: Better, faster, stronger,
IEEE Conf. Comput. Vision Pattern Recog., Honolulu, HI, USA,
July 21–26, 2017, pp. 6517–6525.

9. W. Liu et al., SSD: Single shot MultiBox detector, Eur. Conf. Com-
put. Vision, Amsterdam, Netherlands, Oct. 8–16, 2016, pp. 21–37.

10. C. Chen et al., DeepDriving: Learning affordance for direct per-
ception in autonomous driving, IEEE Int. Conf. Comput. Vision,
Santiago, Chile, Dec. 7–13, 2015, pp. 2722–2730.

11. M. Denil et al., Predicting parameters in deep learning, Proc. Int.
Conf. Neural Inform. Process. Syst., Lake Tahoe, NV, USA, Dec.
5–10, 2013, pp. 2148–2156.

12. Y.-D. Kim et al., Compression of deep convolutional neural net-
works for fast and low power mobile applications, 2015, arXiv
preprint arXiv: 1511.06530.

13. V. Lebedev et al., Speeding-up convolutional neural networks
using fine-tuned CP-decomposition, 2014, arXiv preprint arXiv:
1412.6553.

14. A. Paszke et al., Automatic differentiation in PyTorch, Conf.
Neural Inform. Process. Syst., Long Beach, CA, USA, Dec.
2017, pp. 1–4.

15. M. Abadi et al., TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015, available at http://tensorflow.org.

16. Y. Jia et al., Caffe: Convolutional architecture for fast feature
embedding, Proc. ACM Int. Conf. Multimed., Orlando, FL, USA,
Nov. 3–7, 2014, pp. 675–678.

17. G. Golub and W. Kahan, Calculating the singular values and
pseudoinverse of a matrix, J. Soc. Ind. Applicat. Math., Series B:
Numer. Anal., 2 (1965), no. 2, 205–224.

18. G. Allen, Sparse higher‐order principal components analysis,
JISTATS, 15 (2012), 27–36.

19. C. J. Hillar and L.-H. Lim, Most tensor problems are NP‐hard, J.
ACM, 60 (2013), no. 6, 1–39.

20. M. Astrid and S.-I. Lee, CP-decomposition with tensor power
method for convolutional neural networks compression, IEEE Int.
Conf. Big Data Smart Comput., Jeju Island, Rep of Korea, Feb.
13–16, 2017, pp. 115–118.

21. P. Wang and J. Cheng, Accelerating convolutional neural net-
works for mobile applications, Proc. ACM Multimed. Conf.,
vAmsterdam, Netherlands, Oct. 15–19, 2016, pp. 541–545.

22. sh1r0, Caffe-android-lib, 2014. https://github.com/sh1r0/caffe-and
roid-lib.

23. V. De Silva and L.-H. Lim, Tensor rank and the ill‐posedness of
the best low‐rank approximation problem, SIAM J. Matrix Anal.
Applicat. 30 (2008), no. 3, 1084–1127.

24. X. Zhang et al., Accelerating very deep convolutional networks
for classification and detection, IEEE Trans. Pattern Anal. Mach.
Intell. 38 (2016), no. 10, 1943–1955.

25. S. Han et al., Learning both weights and connections for efficient
neural network, Adv. Neural Inform. Process. Syst., Montreal,
Canada, Dec. 7–12, 2015, pp. 1135–1143.

ASTRID AND LEE | 431

http://orcid.org/0000-0003-1432-6661
http://orcid.org/0000-0003-1432-6661
http://orcid.org/0000-0003-1432-6661
http://orcid.org/0000-0003-2986-7540
http://orcid.org/0000-0003-2986-7540
http://orcid.org/0000-0003-2986-7540
http://tensorflow.org
https://github.com/sh1r0/caffe-android-lib
https://github.com/sh1r0/caffe-android-lib


26. M. Rastegari et al., XNOR-net: ImageNet classification using bin-
ary convolutional neural networks, Eur. Conf. Comput. Vision,
Amsterdam, Netherlands, Oct. 8–16, 2016, pp. 525–542.

27. S. Han, H. Mao, and W. J. Dally, Deep compression: Compress-
ing deep neural network with pruning, trained quantization and
huffman coding, Int. Conf. Learning Representations, San Diego,
CA, USA, May 7–9, 2015.

28. J. Yoon and S. J. Hwang, Combined group and exclusive sparsity
for deep neural networks, Int. Conf. Mach. Learning, Sydney,
Australia, Aug. 6–11, 2017, pp. 3958–3966.

29. W. Chen et al., Compressing convolutional neural networks,
2015, arXiv preprint arXiv: 1506.04449.

30. F. N. Iandola et al., SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and < 1 MB model size, 2016, arXiv pre-
print arXiv: 1602.07360.

31. A. G. Howard et al., MobileNets: Efficient convolutional neural
networks for mobile vision applications, 2017, arXiv preprint
arXiv: 1704.04861.

32. F. Chollet, Xception: Deep learning with depthwise separable
convolutions, IEEE Conf. Comput. Vision Pattern Recog., Hono-
lulu, HI, USA, July 21–26, 2017, pp. 1800–1807.

AUTHOR BIOGRAPHIES

Marcella Astrid received her
BS in computer engineering
from the Multimedia Nusantara
University, Tangerang, Indone-
sia, in 2015, and the MEng in
computer software from the
University of Science and Tech-
nology (UST), Daejeon, Korea,

in 2017. At the same university, she is currently
working toward her PhD degree in computer science.
Her recent interests include deep learning and com-
puter vision.

Seung-Ik Lee received his BS,
MS, and PhD degrees in com-
puter science from Yonsei
University, Seoul, Korea, in
1997 and 2001, respectively. He
is currently working for the
Electronics and Telecommunica-

tions Research Institute, Daejeon, South Korea.
Since 2005, he has been with the Department of
Computer Software, University of Science and Tech-
nology, Daejeon, Korea, where he is now a profes-
sor. His research interests include machine learning,
deep learning, and reinforcement learning.

APPENDIX

PARAMETERS OF ALEXNET, GOOGLENET,
AND VGG16

Table 5 shows the parameters of AlexNet, GoogleNet, and
VGG16. Only the parameters to be compressed are dis-
played.

IMPLEMENTATION OF CONVOLUTION
OPERATION IN CAFFE

To fasten the computation in convolution, Caffe imple-
ments the convolution by converting the feature map and
filters (in tensors) into a two‐dimensional matrix because
the matrix multiplication is optimized using basic linear
algebra subprograms (BLAS). More specifically, with an
input feature map tensor of size (_S × _H × _W), and a
convolution filter of size (_S × _D × _D), the feature map
is converted into a matrix of size (_S × _D × _D) × (_
H′ × _W′), and the filter is converted into a vector of size
(_S × _D × _D), as shown in Figure 12. They are then
multiplied and give us a single output feature map of size
(_H′ × _W′). Thus, a feature map conversion requires
(_S × _D × _D) × (_H′ × _W′) rearrangements for a sin-
gle filter. If we have _T filters, then the number of rear-
rangements will be multiplied by _T. Note that there is no
need to so when a 1 × 1 filter is used because the feature
map can be directly interpreted as a matrix without further
rearrangements. However, if a filter other than a 1 × 1 fil-
ter is used, then a rearrangement is inevitable because of
the overlapping that occurs when the convolution filter
slides.

This rearrangement overhead becomes obvious, espe-
cially when the convolution operation is conducted using a
network input layer that typically has three channels in the
case of images.

For example, Table 5 shows that conv1 has T = 96,
S = 3, D = 11, and H′ = W′ = 55. When we decompose
conv1 with rank R, the input channels of a non‐1 × 1 filter
differ between two‐way and three‐ or four‐way decomposi-
tion. This is so because in two‐way, the input channel of

FIGURE 12 Convolution operation in Caffe

432 | ASTRID AND LEE



TABLE 5 Parameters of AlexNet, GoogleNet, and VGG16

Group T S D H H′ #Param #Cost

AlexNet

conv1 1 96 3 11 227 55 34,848 105,415,200

conv2 2 256 48 5 55 27 307,200 223,948,800

conv3 1 384 256 3 27 13 884,736 149,520,384

conv4 2 384 192 3 13 13 663,552 112,140,288

conv5 2 256 192 3 13 13 442,368 74,760,192

fc6 1 4,096 9,216 1 1 1 37,748,736 37,748,736

fc7 1 4,096 4,096 1 1 1 16,777,216 16,777,216

fc8 1 1,000 4,096 1 1 1 4,096,000 4,096,000

TOTAL 60,954,656 724,406,816

GoogleNet

conv1 1 64 3 7 224 112 9,408 118,013,952

conv2 1 192 64 3 56 56 110,592 346,816,512

i3a 1 128 96 3 28 28 110,592 86,704,128

i3b 1 192 128 3 28 28 221,184 173,408,256

i4a 1 208 96 3 14 14 179,712 35,223,552

i4b 1 224 112 3 14 14 225,792 44,255,232

i4c 1 256 128 3 14 14 294,912 57,802,752

i4d 1 288 144 3 14 14 373,248 73,156,608

i4e 1 320 160 3 14 14 460,800 90,316,800

i5a 1 320 160 3 7 7 460,800 22,579,200

i5b 1 384 192 3 7 7 663,552 32,514,048

TOTAL decomposed layer only 3,110,592 1,080,791,040

TOTAL with other layers 6,990,272 1,582,671,872

VGG16

conv1_1 1 64 3 3 224 224 1,728 86,704,128

conv1_2 1 64 64 3 224 224 36,864 1,849,688,064

conv2_1 1 128 64 3 112 112 73,728 924,844,032

conv2_2 1 128 128 3 112 112 147,456 1,849,688,064

conv3_1 1 256 128 3 56 56 294,912 924,844,032

conv3_2 1 256 256 3 56 56 589,824 1,849,688,064

conv3_3 1 256 256 3 56 56 589,824 1,849,688,064

conv4_1 1 512 256 3 28 28 1,179,648 924,844,032

conv4_2 1 512 512 3 28 28 2,359,296 1,849,688,064

conv4_3 1 512 512 3 28 28 2,359,296 1,849,688,064

conv5_1 1 512 512 3 14 14 2,359,296 462,422,016

conv5_2 1 512 512 3 14 14 2,359,296 462,422,016

conv5_3 1 512 512 3 14 14 2,359,296 462,422,016

fc6 1 4,096 2,5088 1 1 1 102,760,448 102,760,448

fc7 1 4,096 4,096 1 1 1 16,777,216 16,777,216

fc8 1 1,000 4,096 1 1 1 4,096,000 4,096,000

TOTAL 138,344,128 15,470,264,320

ASTRID AND LEE | 433



the non‐1 × 1 filter, as shown in the first arrow in Fig-
ure 3C, is S (namely, _S = S = 3). In three‐way decompo-
sition, there is one non‐1 × 1 convolution operation, as
shown in the second arrow in Figure 3B, and its number of
input channels is R. In four‐way decomposition, there are
two non‐1 × 1 convolution operations, as shown in the sec-
ond and third arrows in Figure 3D, and their number of
input channels is R. In other words, for example, if we
decompose using R = 50, the two‐way decomposition has

(3 × 11 × 11) × (55 × 55) × 50 = 54.9 M operations, the
three‐way decomposition has (50 × 11 × 11) × (55 × 55)
× 50 = 915 M operations, and the four‐way decomposition
has (50 × 1 × 11) × (227 × 55) × 50 + (50 × 11 × 1) ×
(55 × 55) × 50 = 426 M operations. Therefore, the two‐
way decomposition performs better in this case. This disad-
vantage of Caffe in a depth‐wise convolution (convolution
with a filter depth of 1) has also been addressed through
Github issue number 5649.

434 | ASTRID AND LEE




