• Title/Summary/Keyword: Decoding Convergence

Search Result 109, Processing Time 0.025 seconds

A Fast Fractal Image Decoding Using the Encoding Algorithm by the Limitation of Domain Searching Regions (정의역 탐색영역 제한 부호화 알고리듬을 이용한 고속 프랙탈 영상복원)

  • 정태일;강경원;권기룡;문광석;김문수
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.125-128
    • /
    • 2000
  • The conventional fractal decoding was required a vast amount computational complexity. Since every range blocks was implemented to IFS(iterated function system). In order to improve this, it has been suggested to that each range block was classified to iterated and non-iterated regions. If IFS region is contractive, then it can be performed a fast decoding. In this paper, a searched region of the domain in the encoding is limited to the range region that is similar with the domain block, and IFS region is a minimum. So, it can be performed a fast decoding by reducing the computational complexity for IFS in fractal image decoding.

  • PDF

Channel Decoding Scheme in Digital Communication Systems (디지털 통신 시스템의 채널 복호 방식)

  • Shim, Yong-Geol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.565-570
    • /
    • 2021
  • A soft-decision decoding scheme of a channel code for correcting an error occurring in a receiver of a digital communication systems is proposed. A method for efficiently decoding by use of the linear and arithmetic structure of linear block codes is presented. In this way, the probability of decoding errors has been reduced. In addition, it is possible to reduce the complexity of decoding as well. Sufficient conditions for achieving optimal decoding has been derived. As a result, the sufficient conditions enable efficient search for candidate codewords. With the proposed decoding scheme, we can effectively perform the decoding while lowering the block error probability.

High-Speed Decoding Algorithm of Data Codeword in Two-Dimensional PDF417 Bar Code (이차원 PDF417 바코드에서 데이터 코드워드의 고속 디코딩 알고리즘)

  • Kim, Young-Jung;Cho, Young-Min;Lee, Jong-Yun
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.285-293
    • /
    • 2014
  • Two-dimensional PDF417 bar code has a wide range of use and has a storage capacity to compress a large amount of data. With these characteristics, PDF417 has been used in various ways to prevent the forgery and alteration of important information in documents. On the other hand, previous decoding methods in PDF417 barcode are slow and inefficient because they simply employ the standard specifications of AIM (Association for Automatic Identification and Mobility). Therefore, this paper propose an efficient and fast algorithm of decoding PDF417 bar code. As a result, the proposed decoding algorithm will be more faster and efficient than previous methods.

Iterative V-BLAST Decoding Algorithm in the AMC System with a STD Scheme

  • Lee, Keun-Hong;Ryoo, Sang-Jin;Kim, Seo-Gyun;Hwang, In-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we propose and analyze the AMC (Adaptive Modulation and Coding) system with efficient turbo coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique. The proposed algorithm adopts extrinsic information from a MAP (Maximum A Posteriori) decoder with iterative decoding as a priori probability in two decoding procedures of V-BLAST scheme; the ordering and the slicing. Also, we consider the AMC system using the conventional turbo coded V-BLAST technique that simply combines the V-BLAST scheme with the turbo coding scheme. And we compare the proposed decoding algorithm to a conventional V-BLAST decoding algorithm and a ML (Maximum Likelihood) decoding algorithm. In addition, we apply a STD (Selection Transmit Diversity) scheme to the systems for better performance improvement. Results indicate that the proposed systems achieve better throughput performance than the conventional systems over the entire SNR range. In terms of transmission rate performance, the suggested system is close in proximity to the conventional system using the ML decoding algorithm.

Reliability-Based Iterative Proportionality-logic Decoding of LDPC Codes with Adaptive Decision

  • Sun, Youming;Chen, Haiqiang;Li, Xiangcheng;Luo, Lingshan;Qin, Tuanfa
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • In this paper, we present a reliability-based iterative proportionality-logic decoding algorithm for two classes of structured low-density parity-check (LDPC) codes. The main contributions of this paper include: 1) Syndrome messages instead of extrinsic messages are processed and exchanged between variable nodes and check nodes, which can reduce the decoding complexity; 2) a more flexible decision mechanism is developed in which the decision threshold can be self-adjusted during the iterative process. Such decision mechanism is particularly effective for decoding the majority-logic decodable codes; 3) only part of the variable nodes satisfying the pre-designed criterion are involved for the presented algorithm, which is in the proportionality-logic sense and can further reduce the computational complexity. Simulation results show that, when combined with factor correction techniques and appropriate proportionality parameter, the presented algorithm performs well and can achieve fast decoding convergence rate while maintaining relative low decoding complexity, especially for small quantized levels (3-4 bits). The presented algorithm provides a candidate for those application scenarios where the memory load and the energy consumption are extremely constrained.

Performance Improvement of Iterative Demodulation and Decoding for Spatially Coupling Data Transmission by Joint Sparse Graph

  • Liu, Zhengxuan;Kang, Guixia;Si, Zhongwei;Zhang, Ningbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5401-5421
    • /
    • 2016
  • Both low-density parity-check (LDPC) codes and the multiple access technique of spatially coupling data transmission (SCDT) can be expressed in bipartite graphs. To improve the performance of iterative demodulation and decoding for SCDT, a novel joint sparse graph (JSG) with SCDT and LDPC codes is constructed. Based on the JSG, an approach for iterative joint demodulation and decoding by belief propagation (BP) is presented as an exploration of the flooding schedule, and based on BP, density evolution equations are derived to analyze the performance of the iterative receiver. To accelerate the convergence speed and reduce the complexity of joint demodulation and decoding, a novel serial schedule is proposed. Numerical results show that the joint demodulation and decoding for SCDT based on JSG can significantly improve the system's performance, while roughly half of the iterations can be saved by using the proposed serial schedule.

Complexity of Distributed Source Coding using LDPCA Codes (LDPCA 부호를 이용한 실용적 분산 소스 부호화의 복호복잡도)

  • Jang, Min;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.329-336
    • /
    • 2010
  • Distributed source coding (DSC) system moves computational burden from encoder to decoder, so it takes higher decoding complexity. This paper explores the problem of reducing the decoding complexity of practical Slepian-Wolf coding using low-density parity check accumulate (LDPCA) codes. It is shown that the convergence of mean magnitude (CMM) stopping criteria for LDPC codes help reduce the 85% of decoding complexity under the 2% of compression rate loss, and marginal initial rate request reduces complexity below complexity minimum bound. Moreover, inter-rate stopping criterion, modified for rate-adaptable characteristic, is proposed for LDPCA codes, and it makes decoder perform less iterative decoding than normal stopping criterion does when channel characteristic is unknown.

Low-Complexity HPGA Decoding Methods for Core-Layer Signal in LDM-MIMO ATSC 3.0 Broadcasting Systems (LDM-MIMO ATSC 3.0 방송 시스템의 Core-Layer 신호를 위한 저복잡도 HPGA 복호 기법들)

  • Kim, Seunghyeon;Shang, Yulong;Jung, Taejin
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.146-149
    • /
    • 2022
  • In this letter, we propose low-complexity Hybrid-Partial-Gaussian-Approximation (HPGA) decoding methods for core-layer signal of Layered-Division-Multiplexing Multiple-Inputs-Multiple- Outputs ATSC 3.0 broadcasting systems. The proposed HPGA decoding methods have an advantage of being able to greatly reduce decoding complexity without significant performance degradation compared to a conventional PGA method, by selectively using existing GA and PGA methods according to a received injection-level at an each receive antenna.

Multihop Rate Adaptive Wireless Scalable Video Using Syndrome-Based Partial Decoding

  • Cho, Yong-Ju;Radha, Hayder;Seo, Jeong-Il;Kang, Jung-Won;Hong, Jin-Woo
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.273-280
    • /
    • 2010
  • The overall channel capacity of a multihop wireless path drops progressively over each hop due to the cascading effect of noise and interference. Hence, without optimal rate adaptation, the video quality is expected to degrade significantly at any client located at a far-edge of an ad-hoc network. To overcome this limitation, decoding and forwarding (DF), which fully decodes codewords at each intermediate node, can be employed to provide the best video quality. However, complexity and memory usage for DF are significantly high. Consequently, we propose syndrome-based partial decoding (SPD). In the SPD framework an intermediate node partially decodes a codeword and relays the packet along with its syndromes if the packet is corrupted. We demonstrate the efficacy of the proposed scheme by simulations using actual 802.11b wireless traces. The trace-driven simulations show that the proposed SPD framework, which reduces the overall processing requirements of intermediate nodes, provides reasonably high goodput when compared to simple forwarding and less complexity and memory requirements when compared to DF.

A New Implementation of the LMS Algorithm as a Decision-directed Adaptive Equalizer with Decoding Delay

  • Ahn, Sang-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.89-94
    • /
    • 1996
  • This paper deals with the application of the LMS algorithm as a decision-directed adaptive equalizer in a communication receiver which also employs a sophisticated decoding scheme such as the Viterbi algorithm, in which the desired signal, hence the error, is not available until several symbol intervals later because of decoding delay. In such applications the implemented weight updating algorithm becomes DLMS and major penalty is reduced convergence speed. Therefore, every effort should by made to keep the delay as small as possible if it is not avoidable. In this paper we present a modified implementation in which the effects of the decoding delay can be avioded and perform some computer simulations to check the validity and the performance of the new implementation.

  • PDF