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The overall channel capacity of a multihop wireless path 
drops progressively over each hop due to the cascading 
effect of noise and interference. Hence, without optimal 
rate adaptation, the video quality is expected to degrade 
significantly at any client located at a far-edge of an ad-hoc 
network. To overcome this limitation, decoding and 
forwarding (DF), which fully decodes codewords at each 
intermediate node, can be employed to provide the best 
video quality. However, complexity and memory usage for 
DF are significantly high. Consequently, we propose 
syndrome-based partial decoding (SPD). In the SPD 
framework an intermediate node partially decodes a 
codeword and relays the packet along with its syndromes 
if the packet is corrupted. We demonstrate the efficacy of 
the proposed scheme by simulations using actual 802.11b 
wireless traces. The trace-driven simulations show that the 
proposed SPD framework, which reduces the overall 
processing requirements of intermediate nodes, provides 
reasonably high goodput when compared to simple 
forwarding and less complexity and memory 
requirements when compared to DF. 
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I. Introduction 

In many wireless environments, deteriorated link conditions 
cause bit-corruptions within transmitted packets. These 
corrupted packets cause checksum failures and packet drops at 
wireless receivers. Thus, rate-adaptive video applications can 
benefit greatly from accurate channel capacity estimation, 
which can be employed to reduce the number of packet drops 
and hence provide improved quality of service.  

To that end, many recent efforts incorporate cross-layer 
protocols that fully utilize corrupted packets to accurately 
estimate channel capacity and to improve throughput [1]-[8]. 
Among recent cross-layer efforts, one class of wireless 
multimedia protocols of particular interest is cross-layer-design 
with side-information (CLDS) [6] protocols, which relay 
corrupted packets with their side-information1) to a higher layer 
for further processing. CLDS protocols differ significantly 
from conventional (CON) [6] protocols, which drop any 
packet that has one or more residue errors.2) Prior studies [1]-
[3], [6], [9] have shown that a very accurate channel capacity 
estimation, and hence significant improvement in wireless 
video throughput, can be achieved by CLDS. Therefore, we 
employ CLDS protocols in this study. 

Some studies [10], [11] have focused on wireless multimedia 
communication over ad-hoc networks, which consist of multiple 
wireless hops from a server to a client. Each wireless channel 
between intermediate nodes suffers from impairment due to 
interference, fading, and multi-path effects. Hence, when a 
                                                               

1) The side information includes signal-to-silence ratio (SSR) indicators and MAC-layer 
checksum for packets, both of which can be used as parameters for channel estimation [7]. 
(SSR is a packet-level SNR parameter supported by 802.11 compliant devices). 

2) Here, a residue error is an error that is not corrected by the physical layer; hence, it 
appears at the media access control (MAC) layer. 
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multihop wireless network is employed, channel capacity 
decreases over each hop; hence, the end-to-end (E2E) channel 
capacity can become very low. This leads to significant 
degradation of goodput3) and video quality for rate adaptation 
applications.  

An ideal workaround to this problem is to employ decoding 
and forwarding (DF). Under DF, channel coding is employed 
over every hop of the end-to-end path. Hence, an intermediate 
node decodes the transmitted packets (or codewords) to suppress 
noise on the channel between two intermediate nodes and re-
encodes the packets, potentially with a different codebook, for 
transmission towards the destination [12]. Thus, DF can achieve 
optimal performance with regard to network capacity. However, 
complexity and memory usage for DF are significantly high. 
Moreover, intermediate nodes, which may be participating by 
only forwarding the content toward a receiver further-down a 
multihop chain, do not have much incentive to perform full 
decoding-encoding of the channel-coded wireless video content. 
For such nodes, we need to minimize their burden in terms of the 
operation they need to perform toward the delivery of the video 
content to the final receiver.  

These issues motivate the usage of a partial processing 
framework for rate-adaptive wireless video, which reduces the 
overall processing requirements of intermediate nodes. In this 
paper, we propose syndrome-based partial decoding (SPD) 
architecture. The proposed architecture employs CLDS 
protocols, which, among other things, accurately estimate the  

 
 

Fig. 1. Topologies used for wireless trace collection [13]. 
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3) In this study the goodput is defined as the application level throughput, that is, the number 
of information bits per total number of bits forwarded by the network from a certain source 
address to a certain destination. 

channel capacity using a simple binary symmetric channel 
(BSC) [14] model. The two main contributions of this paper 
are the following: 

• Syndrome-based partial decoding scheme: Under this 
scheme, each intermediate node only computes the 
syndromes of the received packet (that is, partial decoding) 
and relays the syndromes along with the packet (if the 
packet is corrupted) to the next hop. The client then fully 
decodes the packet by using the syndromes which are 
appended to the packet.  

• Optimal packet size selection scheme: As explained later, 
SPD utilizes the channel packet error rate (PER) as an error 
parameter for its operation; hence, SPD goodput heavily 
depends on the size of packets. Thus, we derive the optimal 
packet size selection scheme to maximize the goodput in 
the proposed architecture. 

The proposed SPD architecture is tested using a 
comprehensive set of wireless residual error traces collected at 
2 Mbps, 5.5 Mbps, and 11 Mbps physical data rates of an 
operational 802.11b network. We compare the performance of 
SPD with DF, E2E decoding, and automatic repeat request 
(ARQ). We show that SPD outperforms E2E decoding and 
ARQ and provides relatively good goodput compared to that 
provided by DF.  

The rest of this paper is organized as follows. Section II 
describes our wireless trace collection setup and then presents a 
preliminary analysis of the collected data. Section III presents 
the motivations for this study and develops the proposed SPD. 
Sections IV and V respectively evaluate the performance of the 
proposed framework and summarize key conclusions of this 
work. 

II. Collection and Empirical Analysis of Residual 
Wireless Traces 

1. Data Collection 

For this study, five wireless receivers were used to 
simultaneously collect error traces on an 802.11b LAN. The 
receivers were placed at various locations in a room, while the 
access point (AP) was placed in a room across a hallway from 
the receivers to simulate a realistic home/classroom/office 
setting. The receivers’ media access control (MAC) layer 
device drivers were modified to pass corrupted packets to 
higher layers. To capture packets at high transmission rates, 
packet dissectors were implemented inside the device drivers. 
These packet dissectors ensured that only packets pertinent to 
our wireless experiment were processed, while all other 
packets were dropped. Each experiment processed one million 
packets with a payload of 1,000 bytes each. That is, each trace  
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Table 1. Statistics of traces used in this study. 

Phy. data 
rate 

( Mbps) 

Avg. 
PER 
(%) 

Min. 
PER 
(%) 

Max. 
PER 
(%) 

Avg. 
BER 
(%) 

Min. 
BER 
(%) 

Max. 
BER 
(%) 

2 5.97 0.75 14.31 0.37 0.024 1.0 

5.5 9.79 0.61 22.74 0.6 0.024 1.31 

11 39.5 10.99 77.83 1.06 0.16 3.03 

 

had approximately 1 GB of data.  
A wired sender was used to send multicast packets with a 

predetermined payload on the wireless LAN. The use of 
multicasting disabled the MAC layer retransmissions. In 
addition to a packet’s header and payload information, we 
logged the signal-to-silence ratio (SSR) for each packet. A 
packet’s SSR is a one-byte number between 0 dB and 100 dB, 
representing an approximate measure of the SNR at which the 
packet was received. The sender used different transmission 
rates ranging from 500 kbps to 1 Mbps for each experiment. At 
the physical layer, the auto-rate-selection feature of the AP was 
disabled, and for each experiment, the AP was forced to 
transmit at a fixed data rate. Each trace collection experiment 
was repeated multiple times at 2 Mbps, 5.5 Mbps, and      
11 Mbps physical layer data rates and at different times of day.  

2. Average Statistics of the Traces 

Table 1 provides some statistics of the traces collected for 
this study. Since the physical layer robustness decreases with 
an increase in data rate, the average packet error rate increases 
with an increase in the physical layer data rate. In particular, the 
average packet error rate increases from approximately 10% at 
5.5 Mbps to almost 40% at 11 Mbps. Since the wireless 
receivers were placed at various locations, the receivers 
experienced different packet error rates. The overall minimum 
and maximum error rates in Table 1 show that the receivers 
under consideration were experiencing both good and bad link 
conditions. 

For a detailed study of BER behavior at different SSR values, 
we refer the reader to section 2 in [13]. 

III. Syndrome-Based Partial Decoding 

In this section, we develop the rate adaptation architecture 
over an ad-hoc network using the two main contributions of 
this paper: SPD and optimal packet size selection. SPD is 
achieved by the following 3 steps. First, it only calculates a 
syndrome for a packet at each intermediate node. Second, it 
forwards a codeword for the syndrome of the packet (only 

when the packet is corrupted at a hop) to the next hop. Third, it 
fully decodes the packet by using its syndromes at a client. 
SPD embodies BER as well as PER. That is, the goodput is a 
function of both BER and PER. Thus, the optimal goodput is 
achieved by finding an optimal packet size that provides the 
best goodput in the proposed architecture. 

1. Architecture for Rate-Adaptation 

The architecture of a multimedia streaming application 
depends heavily on the network over which it operates. 
Therefore, in this section, we define the proposed architecture 
for rate adaptation. Additionally, we outline the assumptions 
under which the proposed architecture is to be evaluated. 

The proposed architecture, shown in Fig. 2, consists of a 
server, intermediate nodes, and a client that receives packets 
over a multihop wireless network. In the proposed architecture, 
a server, intermediate nodes, and a client are designed to 
support source and channel rate adaptation. The intermediate 
nodes and client support CLDS protocols that leverage residue-
error-process and side information, which can be relayed to an 
FEC decoder for partial decoding at each intermediate nodes or 
full decoding at a client [15], to estimate the current channel 
capacity4) for a block of packets (or a rate adaptation period). 
The current channel capacity, which is estimated by the 
channel estimator with the entropy of the residue error process, 
is then transmitted to the server as feedback for rate adaptation. 
Using the feedback, the rate tuner at the server predicts the 
optimal source and channel rates for the next block of 
multimedia packets to be transmitted [14].  

For this study, we focus on the performance of SPD; 
therefore, we assume that the system employs generic 
(arguably ideal) channel and source coding schemes. In 
particular, we consider the following simplifying assumptions. 
First, the channel code achieves the capacity (an ideal channel 
coder), and a block of packets can be successfully decoded at 
the client if the total rate source and channel coding rate does 
not exceed channel capacity, that is, R C≤ [16]. Note that rate 
R is predicted using (8) in [9]. Second, a video encoder 
provides a bit-stream having a bitrate that is exactly the same as 
the required bitrate, and the bit-stream renders the peak-to-peak 
signal-to-noise ratio (PSNR) value [17] according to the bitrate. 
With these two assumptions, we realize an architecture where, 
for video rates that cannot be supported by the underlying 
channel capacity, the video quality reduces to zero (zero PSNR 
value). Note that without these assumptions (that is, if, a 
                                                               

4) Here, the channel capacity is estimated as 
1
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represents the BER estimate for packet i; 
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=
∑ is the instantaneous per-packet error-

process entropy in a block of m packets; and n is a rate adaptation period [9]. 
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Fig. 2. Architecture of the proposed rate adaptation. 
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realistic channel coder or video encoder was used), we should 
carefully take the performance of the channel coder and video 
encoder into consideration in finding the rate. Therefore, these 
assumptions were made to focus only on the performance of 
the proposed SPD scheme. 

2. SPD Overview 

Each intermediate node calculates the packet syndromes 
1 1( _ )T

r n r nSyndrome Check matrix Packet× × ×= ⋅ from the 
server or the previous intermediate node and forwards the packet 
with the packet’s syndromes (including the redundancy of the 
syndrome; that is, the codeword for the syndrome) only if the 
packet is corrupted. Note that when a packet is not corrupted (the 
syndromes consist of all 0s) only the packet is relayed to the next 
hop. Meanwhile, when a packet is corrupted, each node adds its 
syndrome, including the syndrome redundancy, to the packet in 
an embedded manner; hence, this process is repeated 
progressively until a client receives the packet. The client then 
uses the syndromes, which are coded and appended to the packet, 
to decode the packet. For example, under the scenario shown in 
Fig. 2, when a packet is corrupted at the first and second hops, 
the client receives the packet and two different syndromes 
appended to the packet. Note that a syndrome is used as the 
information needed to successfully decode the packet which is 
corrupted in a hop (or a channel link).  

Note that a server uses the maximum channel BER 
max 1 2 3( max( , , ))ε ε ε ε=  to select the rates rather than the E2E 

BER E2E max( )ε ε≥  (see Fig. 2) since each syndrome can be 
used to correct errors that occur at each hop. This leads SPD to 
suppress noise on each channel between a server and a client 
and to provide goodput performance close to that of DF.  

Using Fig. 2 as an illustrative example, the packet received at 
a client is then decoded along with its syndromes as follows:  

Step 1. Decode the codewords for the syndromes that are 
forwarded from the previous nodes. 

Step 2. Decode the codeword for the message with each of 

the decoded codewords for the syndromes. 
Note that the above procedure is applicable to Hamming 

codes, and a similar procedure can be applied to Reed 
Solomon (RS) codes, for which the syndrome polynomial can 
be employed. 

3. Goodput Evaluation 

In this section, we develop the expression for the goodput of 
the proposed SPD and other schemes such as DF, end node 
decoding, and ARQ. As described in the previous subsection, 
for SPD, the total number of bits transmitted to a multihop 
wireless network increases as the PER and the number of hops 
increase. Therefore, the per-hop goodput for SPD, GoodputSPD, 
can be expressed as 
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where k is the number of information (original source) bits, r is 
the number of redundant bits for k, n(=k+r) is the total number 
of bits in a packet length, ks is the number of syndrome (bits) of 
the packet, rs is the number of redundant bits for the syndrome, 
h represents the number of hops from a server to a client, and  

max
max

max

( )
1 .

1 ( )
H

H
ε

ε
Δ = +

−
 Note that  

( )( )s s
1

total

( )
,

i i

h

i
i

k r h PER k r h
n

h
=

+ ⋅ + ⋅ + ⋅
=

∑
 

which normalizes the total number of bits by defining the per-
hop transmission cost; the length of ks is the same as that of r;  

and s max max max
s
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( ) ( ) ( )
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k H r H r H
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C C H
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DF corrects error bits (full decoding) and re-encoding at 
every intermediate node; therefore, the goodput for DF, 
GoodputDF, can be expressed as  

DF
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where total ( ) /n n h h= ⋅ , normalizing the total number of bits  
by defining the per-hop transmission cost. 

End node decoding, which we defined in this study, employs 
CLDS protocols but does not incorporate a partial or full 
decoding at any intermediate node and uses the E2E channel 
BER, E2Eε , to find a source and channel coding rate. Thus, the 
goodput for end node decoding, GoodputEND, can be expressed 
as 
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where E2E 1 2* * * ,nε ε ε ε= and E2E
E2E
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−
  

Note that the BER for two cascaded BSCs is 

1 2 1 2 1 2* 2ε ε ε ε ε ε= + − ⋅ . 
For ARQ, a packet is re-transmitted until a defined time-out 

by a server if it is corrupted during its transmission from a 
server to a client. Therefore, the goodput for ARQ can be 

expressed as 

ARQ E2E1Goodput PER= − ,           (4) 

where E2E 1 2* * * nPER PER PER PER= . 

4. Optimization of SPD 

PER changes with respect to the size of a packet for a given 
channel BER, and GoodputSPD is a function of BER and PER. 
Therefore, we capture this aspect to find the optimal packet 
size, pkt_size, which maximizes GoodputSPD as in [18] as  

*

SPD
pkt_size

pkt_size max
max

1 max

_ arg max

1arg max ,
( )1

1 ( )

h

i
i

pkt size Goodput

HPER
H

ε
ε=

=

=
⎡ ⎤

+ ⋅ ⋅ Δ⎢ ⎥−⎣ ⎦
∑

 (5) 

where l is the packet header5) (in bits). Note that for the 
goodput developed in the previous section, a packet header is 
not considered. Therefore, we consider the packet header for a 
realistic simulation. In addition, it is necessary to model the 
PER as a function of packet sizes to fully utilize (5). 
Consequently, we develop an empirical PER model to express 
the PER for packet sizes. To deduce the empirical model, we 
conduct the following measurement procedure:  

Step 1. Calculate the BER of the underlying channel, that is, 
the BER of a collected trace. 

Step 2. Calculate PER with respect to packet size. 
Step 3. Repeat steps 1 and 2 with different traces. 

From a comprehensive set of measurements, it can be 
observed that PER linearly increases as the packet size 
increases (see Fig. 3). Consequently, we derive the empirical 
model to express the PER for packet sizes as 

,PER ax b= +               (6) 

where a = 1.071×10−5, b = 0.01597, and x is packet size. Note 
that a and b were found by linear fitting. 

We leverage this empirical PER model to optimally select 
the packet size which maximizes GoodputSPD. The 
performance of SPD, which fully employs this model, is 
described in the following section.  

IV. Performance Evaluation 

We now compare the performance of the proposed SPD  

                                                               
5) Header refers to supplemental data placed at the beginning of a block of data being stored 

or transmitted, which contain information for the handling of the data block. We use 56 bytes 
(28 bytes for MAC, 20 for IP, and 8 for UDP header) as a size of packet header. 
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Fig. 3. Empirical PER model. 
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transmitted bits.  

 

 

Fig. 5. RD (quality) function of SVC test video sequence [13].
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with DF, end node decoding, and ARQ in terms of goodput 
and the total number of bits transmitted in an ad-hoc network. 
To compare the performance of the schemes, the experiments  

Table 2. Performance comparison of schemes in terms of goodput 
(125 packets and each packet consists of 8,000 bits). 

Number of hops 
Scheme  

1 2 3 4 5 

Goodput 0.944 0.944 0.944 0.933 0.933
DF Xmited bits 

(kbits) 1,000 2,000 3,000 4,000 5,000

Goodput 0.944 0.939 0.934 0.916 0.911
SPD Xmited bits 

(kbits) 1,000 2,005 3,015 4,037 5,062

Goodput 0.944 0.913 0.897 0.858 0.832
END Xmited bits 

(kbits) 1,000 2,000 3,000 4,000 5,000

Goodput 0.912 0.856 0.816 0.768 0.728
ARQ Xmited bits 

(kbits) 1,088 2,288 3,552 4,928 6,360

Table 3. Performance of SPD with optimal packet size (Opt. pkt_siz) 
selection scheme in terms of goodput (Xmit rate=500 kbps).

Actual channel Optimization No. 
of 

hops
Opt.pkt_siz

(bits) Goodput PSNR 
(dB) 

Opt.pkt_siz 
(bits) Goodput PSNR

(dB) 
2 28,555 0.9126 30.38 26,700 0.9124 30.38

3 18,806 0.8999 30.34 19,100 0.8960 30.32

4 14,487 0.8760 30.26 14,456 0.8759 30.25

5 13,754 0.8669 30.23 12,649 0.8646 30.21

 
in this study were conducted as follows: 

Step 1. Calculate the BER and PER of each channel (or hop) 
for a rate adaptation period. Note that we use 2 Mbps traces for 
this simulation and treat each trace as the channel between two 
nodes in the network. 

Step 2. Find the source and channel coding rate, for a rate 
adaptation period. Note that we assume the use of an ideal 
channel code; hence, we use the capacity as the rate. 

Step 3. Calculate the goodput for SPD, DF, end node 
decoding, and ARQ by using (1), (2), (3), and (4). 

Step 4. Find the optimal packet size by using (5) which 
incorporates the empirical PER model (see (6)) and the 
corresponding goodput.  

Step 5. Calculate the PSNR using the rate-distortion (RD) 
function of a scalable video coding (SVC) sequence, Q(•) (see 
Fig. 5) [19], for the given goodput as PSNR=Q(GoodputSPD•T) 
where T represents a transmission (Xmit) rate in bits-per-
second. 

As for goodput, Fig. 4 and Table 2 show that SPD 
outperforms end node decoding and ARQ and its performance 
is a little inferior to that of DF over hops. However, note that 
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although DF provides the best performance in terms of 
goodput, the complexity and memory usage at each 
intermediate node are significantly high since each 
intermediate node performs full decoding and re-encoding of 
packets. Additionally, the results shown in Fig. 4 and Table 2 
do not employ the optimal packet size selection scheme. 

It is also observed in Table 2 that the total number of bits 
transmitted by all nodes in the network for SPD is a little larger 
than those of the DF and end node decoding schemes. 
However, the difference is very small and does not 
significantly impact the goodput of SPD.  

The excellent performance of the proposed optimal packet 
size selection scheme for SPD can be seen in Table 3. The first 
column of Table 3 represents the number of hops. The second, 
third, and fourth columns represent the optimal packet size, 
goodput, and PSNR achieved by SPD under the actual channel, 
that is, the collected traces used for simulations in this study. 
The fifth column represents the optimal packet size estimated 
by (5) and (6). The sixth and seventh columns respectively 
represent the goodput and PSNR with the optimally estimated 
packet size under actual channel. As shown in Table 3, the 
optimal packet size selection scheme very accurately estimates 
the packet sizes that maximize both goodput and PSNR. In fact, 
they are very close to the optimum. 

V. Conclusion 

In this paper, we proposed the new partial processing SPD 
framework for multihop rate-adaptive wireless video. From our 
realistic experiments, SPD reduces the overall processing 
requirements of intermediate nodes and provides reasonably 
high goodput compared to end node decoding and ARQ. Also, 
SPD provides less goodput than DF. However, the 
performance difference between DF and SPD is relatively 
small if we take complexity and memory requirements into 
consideration. Furthermore, if SPD incorporates entropy 
coding, such as Hoffman or run-length coding, for syndromes 
at each intermediate node, the goodput will be further 
improved.  
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