Nowadays, every kind of system is changed so complex and enormous, it is necessary to assure system reliability, product liability and safety. Fault tree analysis(FTA) is a reliability/safety design analysis technique which starts from consideration of system failure effect, referred to as “top event”, and proceeds by determining how these can be caused by single or combined lower level failures or events. So in fault tree analysis, it is important to find the combination of events which affect system failure. Minimal cut sets(MCS) and minimal path sets(MPS) are used in this process. FTA-I computer program is developed which calculates MCS and MPS in terms of Gw-Basic computer language considering Fussell's algorithm. FTA-II computer program which analyzes importance and function cost of VE consists. of five programs as follows : (l) Structural importance of basic event, (2) Structural probability importance of basic event, (3) Structural criticality importance of basic event, (4) Cost-Failure importance of basic event, (5) VE function cost analysis for importance of basic event. In this study, a method of initiation such as failure, function and cost in FTA is suggested, and especially the priority rank which is calculated by computer-aided decision analysis program developed in this study can be used in decision making determining the most important basic event under various conditions. Also the priority rank can be available for the case which selects system component in FMEA analysis.
The purpose of this study is to verify relation between satisfaction of university education and royalty based on analysis of satisfaction survey result of enrolled all students in J regional university. The university royalty in addition to drop out rate is one of the key indicators of managing university performance and it is differentiated approach that has positive perspectives. Based on satisfaction survey results, first, there was a significant difference in satisfaction by school year and grade range. Second, the analysis result of logistic regression method that had been performed to verify the construct which affecting university royalty of students show that satisfaction with lecture, academic guidance, educational environment and self management in academic life were the significant impact on royalty. Also, the decision tree analysis show that top decision factor is self-satisfaction of university life to determine university royalty.
Purpose: The aim of this study was to assess lipid levels and to identify groups with poor lipid control group among patients with dyslipidemia. Methods: Data from 1,399 Korean patients with dyslipidemia older than 20 years were extracted from the Korea National Health and Nutrition Examination Survey. Complex sample analysis and decision-tree analysis were conducted with using SPSS for Windows version 27.0. Results: The mean levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), and high density lipoprotein cholesterol were 211.38±1.15 mg/dL, 306.61±1.15 mg/dL, 118.48±1.08 mg/dL, and 42.39±1.15 mg/dL, respectively. About 61% of participants showed abnormal lipid control. Poor glycemic control groups (TC ≥ 200 mg/dL or TG ≥ 150 mg/dL or LDL-C ≥ 130 mg/dL) were identified through seven different pathways via decision-tree analysis. Poor lipid control groups were categorized based on patients' characteristics such as gender, age, education, dyslipidemia medication adherence, perception of dyslipidemia, diagnosis of myocardial infarction or angina, diabetes mellitus, perceived health status, relative hand grip strength, hemoglobin A1c, aerobic exercise per week, and walking days per week. Dyslipidemia medication adherence was the most significant predictor of poor lipid control. Conclusion: The findings demonstrated characteristics that are predictive of poor lipid control and can be used to detect poor lipid control in patients with dyslipidemia.
As the need for the use of big data increases, various analysis activities using big data, including SNS data, are being carried out in individuals, companies, and countries. However, existing research on predicting technology market trends has been mainly conducted using expert-dependent or patent or literature research-based data, and objective technology prediction using big data is needed. Therefore, this study aims to present a model for predicting future technologies through decision tree analysis, visualization analysis, and percentage analysis with data from social network services (SNS). As a result of the study, percentage analysis was better able to predict positive techniques compared to other analysis results, and visualization analysis was better able to predict negative techniques compared to other analysis results. The decision tree analysis was also able to make meaningful predictions.
The Purpose of this paper is to analysis on consumer's purchasing behavior and intention of local food. To analysis consumer's purchasing behavior, a series of homemaker surveys were conducted. The sample size of the survey is 416 respectively. As a survey result, consumer's purchasing behavior shows that purchasing ratio of local food and buying place is various type. By decision tree model analysis showed that consumer's purchasing intention is enough to establishing local food system in region. Therefore, strategies for regional consumption are needed expression of the place city and county of origin, diversification of purchasing item and buying area, and sustainable improvement for safety and trust on local food.
Journal of the Korean Data and Information Science Society
/
v.20
no.1
/
pp.179-190
/
2009
In the financial industry, the decision tree algorithm has been widely used for classification analysis. In this case one of the major difficulties is that there are so many explanatory variables to be considered for modeling. So we do need to find effective method for reducing the number of explanatory variables under condition that the modeling results are not affected seriously. In this research, we try to compare the various variable reducing methods and to find the best method based on the modeling accuracy for the tree algorithm. We applied the methods on the pension insurance of a insurance company for getting empirical results. As a result, we found that selecting variables by using the sensitivity analysis of neural network method is the most effective method for reducing the number of variables while keeping the accuracy.
Kim, Kyeong-Im;Jung, Sung-Ju;Kim, Sung-Hyun;Han, Soon-Hee;Ceong, Hee-Taek;Kim, Tae-Ho;Park, Jeong-Seon
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.4
/
pp.661-674
/
2021
Edwardsiellosis is difficult to treat in cultured olive flounder, Paralichthys olivaceus. It is present in the fish for a long period during all growth stages, and it often leads to mass mortalites. In this paper, the clinical patterns of Edwardsiellosis were analyzed by dividing the data into the whole-water temperature, low-water temperature, low-high water temperature, high-water temperature, and high-low water temperature groups based on various clinical signs of diseased cultured olive flounder using a decision tree technique. In the clinical sign patterns in the decision trees analyzed in the experiment, clinical signs in the liver, such as liver nodules, liver hemorrhages, and liver degeneration, were selected as the criteria for determining Edwardsiellosis. The selected clinical signs were known as the major clinical signs of Edwardsiellosis, and through consultation with fishery disease experts, the analysis confirmed that the clinical signs of Edwardsiellosis were successfully found in this study.
Purpose: This study was performed to analyze the levels of blood pressure and to identify good or poor blood pressure control (BPC) groups among hypertension patients. The study was based on the Korea National Health and Nutrition Examination Survey (KNHANES VI and VII) conducted from 2013 to 2016. Methods: The sociodemographic and clinical data of 4,151 Korean hypertension patients aged 20-79 years and who were taking antihypertensive medications was extracted from the KNHANES VI and VII database. Descriptive statistics for complex samples and a decision-tree analysis were performed using the SPSS WIN 24.0 program. Results: The mean age was $62.46{\pm}0.21years$. The mean systolic blood pressure (SBP) was $128.07{\pm}0.28mmHg$, and the diastolic blood pressure (DBP) was $76.99{\pm}0.21mmHg$. 71.9% of participants showed normal blood pressure (SBP < 140mmHg and DBP < 90mmHg). From the decisiontrees analysis, the characteristics of participants related to good BPC group were presented with 9 different pathways same as those from the poor BPC group. Good or poor BPC groups were classified according to the patients' characteristics such as age, living status, occupation, education, hypertension diagnosis period, numbers of comorbidity, perceived health status, total cholesterol, high density lipoprotein-cholesterol, alcohol drinking per month, and depressive mood. Total cholesterol level (< 201mg/dL or ${\geq}201mg/dL$ cutoff point) was the most significant predictor of the participants' BPC group. Conclusion: This decision-tree model with the 18 different pathways can form a basis for the screening of hypertension patients with good or poor BPC in either clinical or community settings.
Kang, Kyung Ok;Han, Nara;Jeong, Jeong A;Choi, Young Eun;Park Jin Kyung;Jeong, Seok Hee
Journal of East-West Nursing Research
/
v.29
no.1
/
pp.68-77
/
2023
Purpose: The purposes of this study were to develop a predictive model and evaluate this model of turnover in hospital nurses. Methods: Participants were 1,565 nurses from a tertiary hospital in South Korea. Descriptive statistics and a decision-tree analysis were performed using the SPSS WIN 23.0 program. Results: The turnover groups were presented in eleven different pathways by decision tree analysis. There were three high-risk groups with a higher turnover rate than the average, and eight low-risk groups with a lower turnover rate. Among them, two low-risk groups had a 0% turnover rate. The groups were classified according to general characteristics such as position, period of temporary position, clinical career at last working unit, total clinical career, and period of leave of absence. The accuracy of the model was 83.2%, sensitivity 63.7%, and specificity 98.1%. Conclusion: This predictive model of turnover may be used to screen the turnover risk groups and contribute for decreasing the turnover of hospital nurses in South Korea.
In this paper, data mining regression analysis and decision tree analysis techniques were used to analyze factors affecting the life satisfaction of middle school students. For this purpose, we analyzed Korean Children and Youth Panel Survey(KCYPS) data. As results, the common influencing factors to the life satisfaction were derived from regression analysis. Those factors are self-esteem, depression, total grade satisfaction, regional community awareness, career identity, annual delinquency damage experience, siblings' factors, trust, behavioral control, and concentration. Based on the result described by decision tree analysis, the factors that indicate a significant impact on the life satisfaction of middle school students were self-esteem, depression, career identity and attention factor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.