• Title/Summary/Keyword: Decision Tree analysis

Search Result 736, Processing Time 0.026 seconds

Computer-Aided Decision Analysis for Improvement of System Reliability

  • Ohm, Tai-Won
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.91-102
    • /
    • 2000
  • Nowadays, every kind of system is changed so complex and enormous, it is necessary to assure system reliability, product liability and safety. Fault tree analysis(FTA) is a reliability/safety design analysis technique which starts from consideration of system failure effect, referred to as “top event”, and proceeds by determining how these can be caused by single or combined lower level failures or events. So in fault tree analysis, it is important to find the combination of events which affect system failure. Minimal cut sets(MCS) and minimal path sets(MPS) are used in this process. FTA-I computer program is developed which calculates MCS and MPS in terms of Gw-Basic computer language considering Fussell's algorithm. FTA-II computer program which analyzes importance and function cost of VE consists. of five programs as follows : (l) Structural importance of basic event, (2) Structural probability importance of basic event, (3) Structural criticality importance of basic event, (4) Cost-Failure importance of basic event, (5) VE function cost analysis for importance of basic event. In this study, a method of initiation such as failure, function and cost in FTA is suggested, and especially the priority rank which is calculated by computer-aided decision analysis program developed in this study can be used in decision making determining the most important basic event under various conditions. Also the priority rank can be available for the case which selects system component in FMEA analysis.

  • PDF

A Study of Factors Influencing University Royalty through Education Satisfaction (교육만족도를 통한 대학생들의 대학 충성도에 영향을 미치는 요인에 대한 연구)

  • Kang, Min-Chae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.365-374
    • /
    • 2017
  • The purpose of this study is to verify relation between satisfaction of university education and royalty based on analysis of satisfaction survey result of enrolled all students in J regional university. The university royalty in addition to drop out rate is one of the key indicators of managing university performance and it is differentiated approach that has positive perspectives. Based on satisfaction survey results, first, there was a significant difference in satisfaction by school year and grade range. Second, the analysis result of logistic regression method that had been performed to verify the construct which affecting university royalty of students show that satisfaction with lecture, academic guidance, educational environment and self management in academic life were the significant impact on royalty. Also, the decision tree analysis show that top decision factor is self-satisfaction of university life to determine university royalty.

Identification of subgroups with poor lipid control among patients with dyslipidemia using decision tree analysis: the Korean National Health and Nutrition Examination Survey from 2019 to 2021 (의사결정나무 분석을 이용한 이상지질혈증 유병자의 지질관리 취약군 예측: 2019-2021년도 국민건강영양조사 자료)

  • Hee Sun Kim;Seok Hee Jeong
    • Journal of Korean Biological Nursing Science
    • /
    • v.25 no.2
    • /
    • pp.131-142
    • /
    • 2023
  • Purpose: The aim of this study was to assess lipid levels and to identify groups with poor lipid control group among patients with dyslipidemia. Methods: Data from 1,399 Korean patients with dyslipidemia older than 20 years were extracted from the Korea National Health and Nutrition Examination Survey. Complex sample analysis and decision-tree analysis were conducted with using SPSS for Windows version 27.0. Results: The mean levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), and high density lipoprotein cholesterol were 211.38±1.15 mg/dL, 306.61±1.15 mg/dL, 118.48±1.08 mg/dL, and 42.39±1.15 mg/dL, respectively. About 61% of participants showed abnormal lipid control. Poor glycemic control groups (TC ≥ 200 mg/dL or TG ≥ 150 mg/dL or LDL-C ≥ 130 mg/dL) were identified through seven different pathways via decision-tree analysis. Poor lipid control groups were categorized based on patients' characteristics such as gender, age, education, dyslipidemia medication adherence, perception of dyslipidemia, diagnosis of myocardial infarction or angina, diabetes mellitus, perceived health status, relative hand grip strength, hemoglobin A1c, aerobic exercise per week, and walking days per week. Dyslipidemia medication adherence was the most significant predictor of poor lipid control. Conclusion: The findings demonstrated characteristics that are predictive of poor lipid control and can be used to detect poor lipid control in patients with dyslipidemia.

Forecasting Market trends of technologies using Bigdata (빅데이터를 이용한 기술 시장동향 예측)

  • Mi-Seon Choi;Yong-Hwack Cho;Jin-Hwa Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.10
    • /
    • pp.21-28
    • /
    • 2023
  • As the need for the use of big data increases, various analysis activities using big data, including SNS data, are being carried out in individuals, companies, and countries. However, existing research on predicting technology market trends has been mainly conducted using expert-dependent or patent or literature research-based data, and objective technology prediction using big data is needed. Therefore, this study aims to present a model for predicting future technologies through decision tree analysis, visualization analysis, and percentage analysis with data from social network services (SNS). As a result of the study, percentage analysis was better able to predict positive techniques compared to other analysis results, and visualization analysis was better able to predict negative techniques compared to other analysis results. The decision tree analysis was also able to make meaningful predictions.

Strategies for Regional Consumption Revitalization of Local Food by Analysis on Purchasing Behavior and Intention (지역농산물의 구매행태 및 의향 분석에 따른 지역 내 소비활성화 방향)

  • Heo, Seung-Wook
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.4
    • /
    • pp.589-600
    • /
    • 2013
  • The Purpose of this paper is to analysis on consumer's purchasing behavior and intention of local food. To analysis consumer's purchasing behavior, a series of homemaker surveys were conducted. The sample size of the survey is 416 respectively. As a survey result, consumer's purchasing behavior shows that purchasing ratio of local food and buying place is various type. By decision tree model analysis showed that consumer's purchasing intention is enough to establishing local food system in region. Therefore, strategies for regional consumption are needed expression of the place city and county of origin, diversification of purchasing item and buying area, and sustainable improvement for safety and trust on local food.

A study on the comparison of descriptive variables reduction methods in decision tree induction: A case of prediction models of pension insurance in life insurance company (생명보험사의 개인연금 보험예측 사례를 통해서 본 의사결정나무 분석의 설명변수 축소에 관한 비교 연구)

  • Lee, Yong-Goo;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.179-190
    • /
    • 2009
  • In the financial industry, the decision tree algorithm has been widely used for classification analysis. In this case one of the major difficulties is that there are so many explanatory variables to be considered for modeling. So we do need to find effective method for reducing the number of explanatory variables under condition that the modeling results are not affected seriously. In this research, we try to compare the various variable reducing methods and to find the best method based on the modeling accuracy for the tree algorithm. We applied the methods on the pension insurance of a insurance company for getting empirical results. As a result, we found that selecting variables by using the sensitivity analysis of neural network method is the most effective method for reducing the number of variables while keeping the accuracy.

  • PDF

Pattern Analysis of Clinical Signs in Cultured Olive Flounder, Paralichthys Olivaceus, with Edwardsielosis using the Decision Tree Technique (의사결정 나무 기법을 이용한 양식넙치의 에드워드병 증상 패턴 분석)

  • Kim, Kyeong-Im;Jung, Sung-Ju;Kim, Sung-Hyun;Han, Soon-Hee;Ceong, Hee-Taek;Kim, Tae-Ho;Park, Jeong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.661-674
    • /
    • 2021
  • Edwardsiellosis is difficult to treat in cultured olive flounder, Paralichthys olivaceus. It is present in the fish for a long period during all growth stages, and it often leads to mass mortalites. In this paper, the clinical patterns of Edwardsiellosis were analyzed by dividing the data into the whole-water temperature, low-water temperature, low-high water temperature, high-water temperature, and high-low water temperature groups based on various clinical signs of diseased cultured olive flounder using a decision tree technique. In the clinical sign patterns in the decision trees analyzed in the experiment, clinical signs in the liver, such as liver nodules, liver hemorrhages, and liver degeneration, were selected as the criteria for determining Edwardsiellosis. The selected clinical signs were known as the major clinical signs of Edwardsiellosis, and through consultation with fishery disease experts, the analysis confirmed that the clinical signs of Edwardsiellosis were successfully found in this study.

Decision-Tree Analysis to Predict Blood Pressure Control Status Among Hypertension Patients Taking Antihypertensive Medications (약물복용 중인 고혈압 환자의 혈압관리양상 예측을 위한 의사결정나무분석)

  • Kim, Hee Sun;Jeong, Seok Hee;Park, Sook Kyoung
    • Journal of Korean Biological Nursing Science
    • /
    • v.21 no.1
    • /
    • pp.85-97
    • /
    • 2019
  • Purpose: This study was performed to analyze the levels of blood pressure and to identify good or poor blood pressure control (BPC) groups among hypertension patients. The study was based on the Korea National Health and Nutrition Examination Survey (KNHANES VI and VII) conducted from 2013 to 2016. Methods: The sociodemographic and clinical data of 4,151 Korean hypertension patients aged 20-79 years and who were taking antihypertensive medications was extracted from the KNHANES VI and VII database. Descriptive statistics for complex samples and a decision-tree analysis were performed using the SPSS WIN 24.0 program. Results: The mean age was $62.46{\pm}0.21years$. The mean systolic blood pressure (SBP) was $128.07{\pm}0.28mmHg$, and the diastolic blood pressure (DBP) was $76.99{\pm}0.21mmHg$. 71.9% of participants showed normal blood pressure (SBP < 140mmHg and DBP < 90mmHg). From the decisiontrees analysis, the characteristics of participants related to good BPC group were presented with 9 different pathways same as those from the poor BPC group. Good or poor BPC groups were classified according to the patients' characteristics such as age, living status, occupation, education, hypertension diagnosis period, numbers of comorbidity, perceived health status, total cholesterol, high density lipoprotein-cholesterol, alcohol drinking per month, and depressive mood. Total cholesterol level (< 201mg/dL or ${\geq}201mg/dL$ cutoff point) was the most significant predictor of the participants' BPC group. Conclusion: This decision-tree model with the 18 different pathways can form a basis for the screening of hypertension patients with good or poor BPC in either clinical or community settings.

A Predictive Model of Turnover among Nurses in a Tertiary Hospital: Decision Tree Analysis (의사결정나무 분석기법을 이용한 상급종합병원 간호사의 이직 예측모형 구축)

  • Kang, Kyung Ok;Han, Nara;Jeong, Jeong A;Choi, Young Eun;Park Jin Kyung;Jeong, Seok Hee
    • Journal of East-West Nursing Research
    • /
    • v.29 no.1
    • /
    • pp.68-77
    • /
    • 2023
  • Purpose: The purposes of this study were to develop a predictive model and evaluate this model of turnover in hospital nurses. Methods: Participants were 1,565 nurses from a tertiary hospital in South Korea. Descriptive statistics and a decision-tree analysis were performed using the SPSS WIN 23.0 program. Results: The turnover groups were presented in eleven different pathways by decision tree analysis. There were three high-risk groups with a higher turnover rate than the average, and eight low-risk groups with a lower turnover rate. Among them, two low-risk groups had a 0% turnover rate. The groups were classified according to general characteristics such as position, period of temporary position, clinical career at last working unit, total clinical career, and period of leave of absence. The accuracy of the model was 83.2%, sensitivity 63.7%, and specificity 98.1%. Conclusion: This predictive model of turnover may be used to screen the turnover risk groups and contribute for decreasing the turnover of hospital nurses in South Korea.

The Life Satisfaction Analysis of Middle School Students Using Korean Children and Youth Panel Survey Data (한국아동·청소년패널조사 데이터를 이용한 중학생 삶의 만족도 분석)

  • An, Ji-Hye;Yun, You-Dong;Lim, Heui-Seok
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.197-208
    • /
    • 2016
  • In this paper, data mining regression analysis and decision tree analysis techniques were used to analyze factors affecting the life satisfaction of middle school students. For this purpose, we analyzed Korean Children and Youth Panel Survey(KCYPS) data. As results, the common influencing factors to the life satisfaction were derived from regression analysis. Those factors are self-esteem, depression, total grade satisfaction, regional community awareness, career identity, annual delinquency damage experience, siblings' factors, trust, behavioral control, and concentration. Based on the result described by decision tree analysis, the factors that indicate a significant impact on the life satisfaction of middle school students were self-esteem, depression, career identity and attention factor.