• Title/Summary/Keyword: Dechlorination

Search Result 175, Processing Time 0.032 seconds

반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 완전탈염소화 환원 생분해

  • Choi Jeong-Dong;Kim Yeong;Gwon Su-Yeol;Park Hu-Won;An Yeong-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.131-134
    • /
    • 2005
  • Anaerobic reductive dechlorination of tetrachloroethylene(PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate(as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. During the degradation of cis-DCE to ethylene, the concentration of hydrogen was $22{\sim}29mM$. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through biological anaerobic reductive dechlorination processes.

  • PDF

혐기성 PCE 탈염소화 미생물 농화 배양 및 미생물 군집 해석

  • 문부영;이태호;박태주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.332-336
    • /
    • 2004
  • An anaerobic PCE(tetrachloroethylene) dechlorinating bacterial culture from a landfill soil was enriched and characterized. The enrichment culture could dechlorinate 60$\mu$mol/$m\ell$ of PCE during a month of incubation and cis-DCE(cis-dichloroethylene) was observed as a main product of PCE dechlorination. Microbial analysis of the dechlorinating enrichment culture by rising PCR-DGGE (Polymerase chain reaction-Denaturing gradient gel electrophoresis) method showed that at least three microorganisms were related to the anaerobic PCE dechlorination.

  • PDF

Development of Source Dechlorination Process for Waste Vinyls (폐비닐류의 원천 탈염공정 개발)

  • Chung, Soohyun;Na, Jeonggeol;Lee, Jonghyuk;Woo, Hee Myung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.186.1-186.1
    • /
    • 2011
  • Most of waste plastics including waste vinyls have been recycled up to about 50% of waste production, 4.5 million ton per year in 2009. To fundamentally increase the recycled amounts of waste plastics to waste production, the energy utilization of waste plastics is inevitable. But the contents of PVC included in waste plastics can limit the use as a RPF and make the air pollutants such as HCl and dioxin when it burns in the combustion system. Accordingly the source dechlorination by using heating method can be applied to make low contents of HCl as less than 0.6%. In this study the twin screw reactor using heat medium was used for the source dechlorination. As results of study, it was considered that this system is effective for the industrilal application.

  • PDF

Elution Behavior of Additive Agent from Flexible PVC (연질 PVC재료로부터의 첨가제의 침출거동)

  • 신선명;전호석;박찬영
    • Resources Recycling
    • /
    • v.10 no.6
    • /
    • pp.3-8
    • /
    • 2001
  • This study was examed about leaching behavior in order to separate plasticizer selectively before dechlorination from flexible PVC material in alkali solutions at $80~120^{\circ}C$. The dechlorination of that was not almost occurred below $100^{\circ}C$. But the yield of elution of plasticizer was 100% above 5M NaOH. Therefore, by controlling alkali concentration and reaction temperature, it is possible to extract the plasticizer selectively without taking dechlorination.

  • PDF

Regiospecificity of Reductive Dechlorination of Chlorophenols in Mono- and Di-Chlorophenol Adapted Anoxic Sediments (Mono-와 Di-Chlorophenol에 적응시킨 혐기성 저질의 탈염소 특성)

  • 공인철;이석모
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.65-76
    • /
    • 1994
  • The regiospecific potential for the reductive dechlorination of 2-, 3-, 4-, 2, 3-, 2, 4-, and 3, 4-chlorophenols (CPs) was studied in mono- and di-CP(DCP) adapted sediment slurries(10% solids). Freshwater sediments adapted to transform 2-CP dechlorinated all tested mono- and di-CPs except 4-CP without a lag period. Adaptation to 2-CP, thus, enhanced the onset of dechlorination of 3-CP and all ortho-substituted CPs tested. Sediment adapted to transform 3-CP dechlorinated all test CPs, except 4-CP and 2, 4-DCP, without a lag period. Sediment adapted to individual DCPs (2, 3-, 2, 4-, and 3, 4-DCP_ exhibited dechlorination(no lag phase) of 2-CP, 2, 3-, 2, 4-, and 3, 4-CDP. Interestingly, meta-cleavage of 3, 4-DCP in all tested adapted sediment occurred, while para-cleavage occurred in 3, 4-DCP adapted sediment. Sediment adapted to dechlorinate ortho and meta-chlorines exhibited a preference for meta following ortho-cleavage, but not for para-cleavage, while the preference for reductive dechlorination was ortho>meta>para for mono-CPs and ortho>para>meta for DCPs in unadapted freshwater anoxic sediments.

  • PDF

Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review

  • Gunawardana, Buddhika;Singhal, Naresh;Swedlund, Peter
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.187-203
    • /
    • 2011
  • Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.

Reductive Dechlorination of Chlorinated Phenols in Bio-electrochemical Process using an Electrode as Electron Donor (전극을 전자공여체로 이용한 생물전기화학공정에서의 염소화페놀의 탈염소화)

  • Jeon, Hyun-Hee;Pak, Dae-Won
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.134-138
    • /
    • 2007
  • It was investigated whether an electrode could serve as an electron donor for biological reductive dechlorination of chlorinated phenols in the bio-electrochemical process. There was no dechlorination in the absence of current and scanning electron microscope image showed that the electrode surface was covered with microorganisms. As a result, the electrode attached cells was responsible for reductive dechlorination. Also, initial high chlorinated phenol concentration such as $437mg/{\ell}$ was rapidly reduced within 5 hours. The maximum dechlorination rate using Monod equation was $5.95mg{\ell}$-h($cm^2$ (electrode surface area)) in the bio-electrochemical reactor.

Anaerobic Reductive Dechlorination of Tetrachloroethylene (PCE) in Two-in-series Semi-continuous Soil Columns (반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 환원탈염소화)

  • Ahn, Young-Ho;Choi, Jeong-Dong;Kim, Young;Kwon, Soo-Youl;Park, Hoo-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.68-76
    • /
    • 2006
  • Anaerobic reductive dechlorination of tetrachloroethylene (PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate (as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. Dechlorination rate of PCE to cis-DCE was $0.62{\sim}1.94\;{\mu}mol$ PCE/L pore volume/d and $2.76\;{\mu}mol$ cis-DCE/ L pore volume/d for that for cis-DCE to ethylene, resulting that net dechlorination rate in the system was 1.43 umol PCE/L pore volume/d. During the degradation of cis-DCE to ethylene, the concentration of hydrogen in column groundwater was $22{\sim}29\;mM$ and $10{\sim}64\;mM$ for the degradation of PCE to cis-DCE. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through in-situ biological anaerobic reductive dechlorination processes.

Effect of Surfactant on Reductive Dechlorination of Trichloroethylene by Zero-Valent Iron (양이온-비이온 혼합계면활성제의 첨가가 영가철을 이용한 TCE환원에 미치는 영향)

  • Shin, Min-Chul;Choi, Hyun-Dock;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2007
  • Trichloroethylene (TCE) is a representative dense non-aqueous phase liquid (DNAPL) and has contaminated substance environments including soil and groundwater due to leakage and careless. DNPAL, has been treated by surfactant-enhanced aquifer remediation (SEAR). After application of SEAR, groundwater contains still surfactant as well as little amount of residual TCE. Permeable reactive barrier using zero-valent iron (ZW) is a very effective technology to treat the residual TCE in groundwater. In this study, the effect of the residual surfactant on the reductive dechlorination of residual TCE was investigated using ZVI. Mixed surfactant composed of nonioinic surfactant and cationic surfactant was used as a residual surfactant because of toxicity and enhancement of dechlorination rate. Structure of surfactant affected significantly the decrhlorination rate of TCE. Mixed surfactant system with relatively short polyethylene oxide (PEO) chain in nonionic surfactant, cationic surfactant did not affect TCE dechlorination rate. However, mixed surfactant system with relatively long PEO chain in nonionic surfactant shows that TCE dechlorination rate was significantly dependent on fraction of cationic surfactant and HLB of nonionic surfactant. Cationic surfactant with trimethyl ammonium group enhanced reductive dechlorination rate compared to that surfactant with pyridinium group.

Biological Dechlorination of Chlorinated Ethylenes by Using Bioelectrochemical System (생물전기화학시스템을 이용한 염화에틸렌의 생물학적 탈염소화)

  • Yu, Jaecheul;Park, Younghyun;Seon, Jiyun;Hong, Seongsuk;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.304-311
    • /
    • 2012
  • Chlorinated ethylenes such as perchloroethylene (PCE) and trichloroethylene (TCE) are widely used as industrial solvents and degreasing agents. Because of improper handling, these highly toxic chlorinated ethylenes have been often detected from contaminated soils and groundwater. Biological PCE dechlorination activities were tested in bacterial cultures inoculated with 10 different environmental samples from sediments, sludges, soils, and groundwater. Of these, the sediment using culture (SE 2) was selected and used for establishing an efficient PCE dechlorinating enrichment culture since it showed the highest activity of dechlorination. The cathode chamber of bioelectrochemical system (BES) was inoculated with the enrichment culture and the system with a cathode polarized at -500 mV (Vs Ag/AgCl) was operated under fed-batch mode. PCE was dechlorinated to ethylene via TCE, cis-dichloroethylene, and vinyl chloride. Microbial community analysis with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that the microbial community in the enrichment culture was significantly changed during the bio-electrochemical PCE dechlorination in the BES. The communities of suspended-growth bacteria and attached-growth bacteria on the cathode surface are also quite different from each other, indicating that there were some differences in their mechanisms receiving electrons from electrode for PCE dechlorination. Further detailed research to investigate electron transfer mechanism would make the bioelctrochemical dechlorination technique greatly useful for bioremediation of soil and groundwater contaminated with chlorinated ethylenes.