Browse > Article
http://dx.doi.org/10.4491/eer.2011.16.4.187

Degradation of Chlorinated Phenols by Zero Valent Iron and Bimetals of Iron: A Review  

Gunawardana, Buddhika (Department of Civil and Environmental Engineering, University of Auckland)
Singhal, Naresh (Department of Civil and Environmental Engineering, University of Auckland)
Swedlund, Peter (Department of Chemistry, University of Auckland)
Publication Information
Environmental Engineering Research / v.16, no.4, 2011 , pp. 187-203 More about this Journal
Abstract
Chlorophenols (CPs) are widely used industrial chemicals that have been identified as being toxic to both humans and the environment. Zero valent iron (ZVI) and iron based bimetallic systems have the potential to efficiently dechlorinate CPs. This paper reviews the research conducted in this area over the past decade, with emphasis on the processes and mechanisms for the removal of CPs, as well as the characterization and role of the iron oxides formed on the ZVI surface. The removal of dissolved CPs in iron-water systems occurs via dechlorination, sorption and co-precipitation. Although ZVI has been commonly used for the dechlorination of CPs, its long term reactivity is limited due to surface passivation over time. However, iron based bimetallic systems are an effective alternative for overcoming this limitation. Bimetallic systems prepared by physically mixing ZVI and the catalyst or through reductive deposition of a catalyst onto ZVI have been shown to display superior performance over unmodified ZVI. Nonetheless, the efficiency and rate of hydrodechlorination of CPs by bimetals depend on the type of metal combinations used, properties of the metals and characteristics of the target CP. The presence and formation of various iron oxides can affect the reactivities of ZVI and bimetals. Oxides, such as green rust and magnetite, facilitate the dechlorination of CPs by ZVI and bimetals, while oxide films, such as hematite, maghemite, lepidocrocite and goethite, passivate the iron surface and hinder the dechlorination reaction. Key environmental parameters, such as solution pH, presence of dissolved oxygen and dissolved co-contaminants, exert significant impacts on the rate and extent of CP dechlorination by ZVI and bimetals.
Keywords
Chlorophenols; Bimetals; Dechlorination; Iron oxides; Passivation; Sorption; Zero valent iron;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Dabo P, Cyr A, Laplante F, Jean F, Menard H, Lessard J. Electrocatalytic dehydrochlorination of pentachlorophenol to phenol or cyclohexanol. Environ. Sci. Technol. 2000;34:1265-1268.   DOI   ScienceOn
2 De AK, Dutta BK, Bhattacharjee S. Reaction kinetics for the degradation of phenol and chlorinated phenols using fenton's reagent. Environ. Prog. 2006;25:64-71.   DOI   ScienceOn
3 Yang CF, Lee CM. Pentachlorophenol contaminated groundwater bioremediation using immobilized Sphingomonas cells inoculation in the bioreactor system. J. Hazard. Mater. 2008;152:159-165.   DOI   ScienceOn
4 Singh S, Chandra R, Patel DK, Reddy MM, Rai V. Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture. Bioresour. Technol. 2008;99:5703-5709.   DOI   ScienceOn
5 Van Nooten T, Springael D, Bastiaens L. Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers. Environ. Sci. Technol. 2008;42:1680-1686.   DOI   ScienceOn
6 Headley JV, Peru KM, Du JL, Gurprasad N, McMartin DW. Evaluation of the apparent phytodegradation of pentachlorophenol by Chlorella pyrenoidosa. J. Environ. Sci. Health A. Toxic. Hazard. Subst. Environ. Eng. 2008;43:361-364.   DOI   ScienceOn
7 Keith L, Telliard W. Priority pollutants. I. A perspective view. Environ. Sci. Technol. 1979;13:416-423.   DOI
8 U.S. Environmental Protection Agency. Protection of environment: toxic pollutants [Internet]. Washington, DC: U.S. Environmental Protection Agency; c2011 [cited 2011 Jul 10]. Available from: http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c=ecfr&rgn=div8&view=text&node=40:28.0.1.1.2.0.1.6&idno=40.
9 Amonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA. Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ. Sci. Technol. 2000;34:4606-4613.   DOI   ScienceOn
10 U.S. Environmental Protection Agency. Priority pollutants [Internet]. Washington, DC: U.S. Environmental Protection Agency; c2011 [cited 2011 Jun 6]. Available from: http://water.epa.gov/scitech/methods/cwa/pollutants.cfm.
11 Tanjore S, Viraraghavan T. Pentachlorophenol--water pollution impacts and removal technologies. Int. J. Environ. Stud. 1994;45:155-164.   DOI   ScienceOn
12 U.S. Environmental Protection Agency. Drinking water contaminants [Internet]. Washington, DC: U.S. Environmental Protection Agency; c2011 [cited 2011 Jun 6]. Available from: http://water.epa.gov/drink/contaminants/index.cfm.
13 U.S. Environmental Protection Agency. Toxicological review of pentachlorophenol: in support of summary information on the Integrated Risk Information System (IRIS). Washington, DC: U.S. Environmental Protection Agency; 2010. p. 288.
14 McLean D, Eng A, Dryson E, et al. Morbidity in former sawmill workers exposed to pentachlorophenol (PCP): a cross-sectional study in New Zealand. Am. J. Ind. Med. 2009;52:271-281.   DOI   ScienceOn
15 Wightman PG, Fein JB. Experimental study of 2,4,6-Trichlorophenol and pentachlorophenol solubilities in aqueous solutions: derivation of a speciation-based chlorophenol solubility model. Appl. Geochem. 1999;14:319-331.   DOI   ScienceOn
16 Shiu WY, Ma KC, Varhanickova D, Mackay D. Chlorophenols and alkylphenols: a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 1994;29:1155-1224.   DOI   ScienceOn
17 Tsang DC, Graham NJ, Lo IM. Humic acid aggregation in zero-valent iron systems and its effects on trichloroethylene removal. Chemosphere 2009;75:1338-1343.   DOI   ScienceOn
18 Junyapoon S. Use of zero-valent iron for wastewater treatment. KMITL Sci. Tech. J. 2005;5:587-595.
19 Ghauch A, Tuqan A. Reductive destruction and decontamination of aqueous solutions of chlorinated antimicrobial agent using bimetallic systems. J. Hazard. Mater. 2009;164:665-674.   DOI   ScienceOn
20 Liu T, Tsang DC, Lo IM. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environ. Sci. Technol. 2008;42:2092-2098.   DOI   ScienceOn
21 Riley RG, Zachara JM. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. Washington, DC: U.S. Department of Energy; 1992. p. 77.
22 Mackenzie PD, Horney DP, Sivavec TM. Mineral precipitation and porosity losses in granular iron columns. J. Hazard. Mater. 1999;68:1-17.   DOI   ScienceOn
23 Devlin JF, Allin KO. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environ. Sci. Technol. 2005;39:1868-1874.   DOI   ScienceOn
24 D'Andrea P, Lai KC, Kjeldsen P, Lo IM. Effect of groundwater inorganics on the reductive dechlorination of TCE by zero-valent iron. Water Air Soil Pollut. 2005;162:401-420.   DOI
25 Hansen HC, Koch CB, Nancke-Krogh H, Borggaard OK, Sorensen J. Abiotic nitrate reduction to ammonium: key role of green rust. Environ. Sci. Technol. 1996;30:2053-2056.   DOI   ScienceOn
26 Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B. Environ. 2004;47:219-256.   DOI   ScienceOn
27 Keane MA. A review of catalytic approaches to waste minimization: case study--liquid-phase catalytic treatment of chlorophenols. J. Chem. Technol. Biotechnol. 2005;80:1211-1222.   DOI   ScienceOn
28 Arcand Y, Hawari J, Guiot SR. Solubility of pentachlorophenol in aqueous solutions: the pH effect. Water Res. 1995;29:131-136.   DOI   ScienceOn
29 Agency for Toxic Substances and Disease Registry. Toxicological profile for chlorophenols. Atlanta: Agency for Toxic Substances and Disease Registry, U.S Department of Health and Human Services; 1999.
30 Kim YH, Carraway ER. Dechlorination of chlorinated phenols by zero valent zinc. Environ. Technol. 2003;24:1455-1463.   DOI
31 Patel UD, Suresh S. Electrochemical treatment of pentachlorophenol in water and pulp bleaching effluent. Sep. Purif. Technol. 2008;61:115-122.   DOI   ScienceOn
32 Myneni SC, Tokunaga TK, Brown GE. Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science 1997;278:1106-1109.   DOI   ScienceOn
33 Liu CC, Tseng DH, Wang CY. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron. J. Hazard. Mater. 2006;136:706-713.   DOI   ScienceOn
34 Davenport AJ, Oblonsky LJ, Ryan MP, Toney MF. The structure of the passive film that forms on iron in aqueous environments. J. Electrochem. Soc. 2000;147:2162-2173.   DOI   ScienceOn
35 Farrell J, Melitas N, Kason M, Li T. Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene. Environ. Sci. Technol. 2000;34:2549-2556.   DOI   ScienceOn
36 Benali O, Abdelmoula M, Refait P, Genin JM. Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochim. Cosmochim. Acta 2001;65:1715-1726.   DOI   ScienceOn
37 Danielsen KM, Hayes KF. pH dependence of carbon tetrachloride reductive dechlorination by magnetite. Environ. Sci. Technol. 2004;38:4745-4752.   DOI   ScienceOn
38 Vikesland PJ, Heathcock AM, Rebodos RL, Makus KE. Particle size and aggregation effects on magnetite reactivity toward carbon tetrachloride. Environ. Sci. Technol. 2007;41:5277-5283.   DOI   ScienceOn
39 Xue X, Hanna K, Abdelmoula M, Deng N. Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations. Appl. Catal. B. Environ. 2009;89:432-440.   DOI   ScienceOn
40 Kamolpornwijit W, Liang L, Moline GR, Hart T, West OR. Identification and quantification of mineral precipitation in Fe 0 filings from a column study. Environ. Sci. Technol. 2004;38:5757-5765.   DOI   ScienceOn
41 Hernandez R. Integration of zero-valent metals and chemical oxidation for the destruction of 2,4,6 trinitrotoluene within aqueous matrices [dissertation]. Mississippi: Mississippi State University; 2002.
42 Balasubramaniam R, Ramesh Kumar AV, Dillmann P. Characterization of rust on ancient Indian iron. Curr. Sci. 2003;85:1546-1555.
43 Phillips DH, Nooten TV, Bastiaens L, et al. Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ. Sci. Technol. 2010;44:3861-3869.   DOI   ScienceOn
44 Kohn T, Livi KJ, Roberts AL, Vikesland PJ. Longevity of granular iron in groundwater treatment processes: corrosion product development. Environ. Sci. Technol. 2005;39:2867-2879.   DOI   ScienceOn
45 Cornell RM, Schwertmann U. The iron oxides structure, properties, reactions, occurrences, and uses. 2nd ed. Weinheim: Wiley-VCH; 2003. p. 664.
46 Brown GE, Henrich VE, Casey WH, et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 1998;99:77-174.
47 Johnson TL, Fish W, Gorby YA, Tratnyek PG. Degradation of carbon tetrachloride by iron metal: complexation effects on the oxide surface. J. Contam. Hydrol. 1998;29:379-398.   DOI   ScienceOn
48 Ritter K, Odziemkowski MS, Gillham RW. An in situ study of the role of surface films on granular iron in the permeable iron wall technology. J. Contam. Hydrol. 2002;55:87-111.   DOI   ScienceOn
49 Helland BR, Alvarez PJ, Schnoor JL. Reductive dechlorination of carbon tetrachloride with elemental iron. J. Hazard. Mater. 1995;41:205-216.   DOI   ScienceOn
50 Yuan G, Keane MA. Catalyst deactivation during the liquid phase hydrodechlorination of 2,4-dichlorophenol over supported Pd: influence of the support. Catal. Today 2003;88:27-36.   DOI   ScienceOn
51 Noubactep C. The suitability of metallic iron for environmental remediation. Environ. Progr. Sustain. Energ. 2010;29:286-291.   DOI   ScienceOn
52 Odziemkowski MS, Schuhmacher TT, Gillham RW, Reardon EJ. Mechanism of oxide film formation on iron in simulating groundwater solutions: raman spectroscopic studies. Corros. Sci. 1998;40:371-389.   DOI   ScienceOn
53 Noubactep C, Schoner A. Metallic iron for environmental remediation: learning from electrocoagulation. J. Hazard. Mater. 2010;175:1075-1080.   DOI   ScienceOn
54 Furukawa Y, Kim JW, Watkins J, Wilkin RT. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ. Sci. Technol. 2002;36:5469-5475.   DOI   ScienceOn
55 Scherer MM, Balko BA, Tratnyek PG. The role of oxides in reduction reactions at the metal-water interface. ACS Symp. Ser. 1999;715:301-322.
56 Erbs M, Bruun Hansen HC, Olsen CE. Reductive dechlorination of carbon tetrachloride using iron(II) iron(III) hydroxide sulfate (green rust). Environ. Sci. Technol. 1998;33:307-311.
57 Blowes DW, Ptacek CJ, Benner SG, McRae CW, Bennett TA, Puls RW. Treatment of inorganic contaminants using permeable reactive barriers. J. Contam. Hydrol. 2000;45:123-137.   DOI   ScienceOn
58 Gu B, Phelps TJ, Liang L, et al. Biogeochemical dynamics in zero-valent iron columns:implications for permeable reactive barriers. Environ. Sci. Technol. 1999;33:2170-2177.   DOI   ScienceOn
59 Wang CB, Zhang WX. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997;31:2154-2156.   DOI   ScienceOn
60 Roh Y, Lee SY, Elless MP. Characterization of corrosion products in the permeable reactive barriers. Environ. Geol. 2000;40:184-194.   DOI
61 Xu Y, Zhang WX. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind. Eng. Chem. Res. 2000;39:2238-2244.   DOI   ScienceOn
62 Lin CJ, Lo SL, Liou YH. Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. J. Hazard. Mater. 2004;116:219-228.   DOI   ScienceOn
63 Cwiertny DM, Bransfield SJ, Roberts AL. Influence of the oxidizing species on the reactivity of iron-based bimetallic reductants. Environ. Sci. Technol. 2007;41:3734-3740.   DOI   ScienceOn
64 Bransfield SJ, Cwiertny DM, Roberts AL, Fairbrother DH. Influence of copper loading and surface coverage on the reactivity of granular iron toward 1,1,1-trichloroethane. Environ. Sci. Technol. 2006;40:1485-1490.   DOI   ScienceOn
65 Graham LJ, Jovanovic G. Dechlorination of p-chlorophenol on a Pd/Fe catalyst in a magnetically stabilized fluidized bed: implications for sludge and liquid remediation. Chem. Eng. Sci. 1999;54:3085-3093.   DOI   ScienceOn
66 Tian H, Li J, Mu Z, Li L, Hao Z. Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep. Purif. Technol. 2009;66:84-89.   DOI   ScienceOn
67 Cwiertny DM, Bransfield SJ, Livi KJ, Fairbrother DH, Roberts AL. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environ. Sci. Technol. 2006;40:6837-6843.   DOI   ScienceOn
68 Schrick B, Blough JL, Jones AD, Mallouk TE. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mater. 2002;14:5140-5147.   DOI   ScienceOn
69 Hoke JB, Gramiccioni GA, Balko EN. Catalytic hydrodechlorination of chlorophenols. Appl. Catal. B. Environ. 1992;1:285-296.   DOI   ScienceOn
70 Patel U, Suresh S. Dechlorination of chlorophenols by magnesium-silver bimetallic system. J. Colloid Interface Sci. 2006;299:249-259.   DOI   ScienceOn
71 Patel UD, Suresh S. Dechlorination of chlorophenols using magnesium-palladium bimetallic system. J. Hazard. Mater. 2007;147:431-438.   DOI   ScienceOn
72 Chen LH, Huang CC, Lien HL. Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride. Chemosphere 2008;73:692-697.   DOI   ScienceOn
73 Wang X, Chen C, Liu H, Ma J. Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Ind. Eng. Chem. Res. 2008;47:8645-8651.   DOI   ScienceOn
74 Elliott DW, Zhang WX. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ. Sci. Technol. 2001;35:4922-4926.   DOI   ScienceOn
75 Muftikian R, Fernando Q, Korte N. A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Res. 1995;29:2434-2439.   DOI   ScienceOn
76 Li T, Farrell J. Reductive dechlorination of trichloroethene and carbon tetrachloride using iron and palladized-iron cathodes. Environ. Sci. Technol. 2000;34:173-179.   DOI   ScienceOn
77 Agarwal S, Al-Abed SR, Dionysiou DD. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs. Environ. Sci. Technol. 2007;41:3722-3727.   DOI   ScienceOn
78 Bandara J, Mielczarski JA, Kiwi J. I. Adsorption mechanism of chlorophenols on iron oxides, titanium oxide and aluminum oxide as detected by infrared spectroscopy. Appl. Catal. B. Environ. 2001;34:307-320.   DOI   ScienceOn
79 Cheng SF, Wu SC. Feasibility of using metals to remediate water containing TCE. Chemosphere 2001;43:1023-1028.   DOI   ScienceOn
80 Cheng IF, Fernando Q, Korte N. Electrochemical dechlorination of 4-chlorophenol to phenol. Environ. Sci. Technol. 1997;31:1074-1078.   DOI   ScienceOn
81 Kung KH, McBride MB. Bonding of chlorophenols on iron and aluminum oxides. Environ. Sci. Technol. 1991;25:702-709.   DOI
82 Noubactep C. The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 2010;36:663-670.
83 Noubactep C. Processes of contaminant removal in "Fe0-$H_2O$" systems revisited: the importance of co-precipitation Open Environ. J. 2007;1:9-13.   DOI
84 U.S. Environmental Protection Agency. Permeable reactive barrier technologies for contaminant remediation. Washington, DC: U.S. Environmental Protection Agency; 1998.
85 Farrell J, Kason M, Melitas N, Li T. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. 2000;34:514-521.   DOI   ScienceOn
86 Huang YH, Zhang TC, Shea PJ, Comfort SD. Effects of oxide coating and selected cations on nitrate reduction by iron metal. J. Environ. Qual. 2003;32:1306-1315.   DOI   ScienceOn
87 Satapanajaru T, Comfort SD, Shea PJ. Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. J. Environ. Qual. 2003;32:1726-1734.   DOI   ScienceOn
88 Su C, Puls RW. Kinetics of trichloroethene reduction by zerovalent iron and tin: pretreatment effect, apparent activation energy, and intermediate products. Environ. Sci. Technol. 1999;33:163-168.   DOI   ScienceOn
89 Ritter K, Odziemkowski MS, Simpgraga R, Gillham RW, Irish DE. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron. J. Contam. Hydrol. 2003;65:121-136.   DOI   ScienceOn
90 Kiser JR, Manning BA. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite. J. Hazard. Mater. 2010;174:167-174.   DOI   ScienceOn
91 Deng B, Burris DR, Campbell TJ. Reduction of vinyl chloride in metallic iron-water systems. Environ. Sci. Technol. 1999;33:2651-2656.   DOI   ScienceOn
92 Xu X, Zhou M, He P, Hao Z. Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water. J. Hazard. Mater. 2005;123:89-93.   DOI   ScienceOn
93 Doong RA, Wu SC. Reductive dechlorination of chlorinated hydrocarbons in aqueous solutions containing ferrous and sulfide ions. Chemosphere 1992;24:1063-1075.   DOI   ScienceOn
94 Wang J, Farrell J. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy. Environ. Sci. Technol. 2003;37:3891-3896.   DOI   ScienceOn
95 Li T, Farrell J. Mechanisms controlling chlorocarbon reduction at iron surfaces. ACS Symp. Ser. 2002;806:397-410.
96 Kim JS, Shea PJ, Yang JE, Kim JE. Halide salts accelerate degradation of high explosives by zerovalent iron. Environ. Pollut. 2007;147:634-641.   DOI   ScienceOn
97 Fontana MG, Greene ND. Corrosion engineering. 2nd ed. New York: McGraw-Hill; 1978.
98 Cheng SF, Wu SC. The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere 2000;41:1263-1270.   DOI   ScienceOn
99 Jones DA. Principles and prevention of corrosion. 2nd ed. Upper Saddle River: Prentice Hall; 1996.
100 Choi JH, Choi SJ, Kim YH. Liquid-liquid extraction methods to determine reductive dechlorination of 2,4,6-trichlorophenol by zero-valent metals and zero-valent bimetals. Sep. Sci. Technol. 2008;43:3624-3636.   DOI   ScienceOn
101 Cheng R, Wang Jl, Zhang WX. Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0. J. Hazard. Mater. 2007;144:334-339.   DOI   ScienceOn
102 Noubactep C, Care S. On nanoscale metallic iron for groundwater remediation. J. Hazard. Mater. 2010;182:923-927.   DOI   ScienceOn
103 Lim TT, Zhu BW. Practical applications of bimetallic nanoiron particles for reductive dehalogenation of haloorganics: prospects and challenges. ACS Symp. Ser. 2009;1027:245-261.
104 Burris DR, Allen-King RM, Manoranjan VS, Campbell TJ, Loraine GA, Deng B. Chlorinated ethene reduction by cast iron: sorption and mass transfer. J. Environ. Eng. 1998;124:1012-1019.   DOI   ScienceOn
105 Deng B, Hu S, Whitworth TM, Lee R. Trichloroethylene reduction on zero valent iron: probing reactive versus nonreactive sites. ACS Symp. Ser. 2003;837:181-205.
106 Bi E, Devlin JF, Huang B, Firdous R. Transport and kinetic studies To characterize reactive and nonreactive sites on granular iron. Environ. Sci. Technol. 2010;44:5564-5569.   DOI   ScienceOn
107 Burris DR, Campbell TJ, Manoranjan VS. Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environ. Sci. Technol. 1995;29:2850-2855.   DOI   ScienceOn
108 Weber EJ. Iron-mediated reductive transformations: investigation of reaction mechanism. Environ. Sci. Technol. 1996;30:716-719.   DOI   ScienceOn
109 Gotpagar J, Lyuksyutov S, Cohn R, Grulke E, Bhattacharyya D. Reductive dehalogenation of trichloroethylene with zero-valent iron: surface profiling microscopy and rate enhancement studies. Langmuir 1999;15:8412-8420.   DOI   ScienceOn
110 Noubactep C. A critical review on the process of contaminant removal in Fe 0-H2O systems. Environ. Technol. 2008;29:909-920.   DOI   ScienceOn
111 Liu Y, Yang F, Yue PL, Chen G. Catalytic dechlorination of chlorophenols in water by palladium/iron. Water Res. 2001;35:1887-1890.   DOI   ScienceOn
112 Zhou T, Li Y, Lim TT. Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: comparisons with other bimetallic systems, kinetics and mechanism. Sep. Purif. Technol. 2010;76:206-214.   DOI   ScienceOn
113 Tong SP, Wei H, Ma CA, Liu WP. Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water. J. Zhejiang Univ. Science 2005;6A:627-631.   DOI
114 Jovanovic GN, Plazl PZ, Sakrittichai P, Al-Khaldi K. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst. Ind. Eng. Chem. Res. 2004;44:5099-5106.
115 Arnold WA, Roberts AL. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 2000;34:1794-1805.   DOI   ScienceOn
116 Schlicker O, Ebert M, Fruth M, Weidner M, Wust W, Dahmke A. Degradation of TCE with iron: the role of competing chromate and nitrate reduction. Ground Water 2000;38:403-409.   DOI   ScienceOn
117 Kim YH. Reductive dechlorination of chlorinated aliphatic and aromatic compounds using zero valent metals: modified metals and electron mediators [dissertation]. College Station: Texas A&M University; 1999.
118 Chen JL, Al-Abed SR, Ryan JA, Li Z. Effects of pH on dechlorination of trichloroethylene by zero-valent iron. J. Hazard. Mater. 2001;83:243-254.   DOI   ScienceOn
119 Geiger Cherie L, Carvalho-Knighton K, Novaes-Card S, Maloney P, DeVor R. A review of environmental applications of nanoscale and microscale reactive metal particles. ACS Symp. Ser. 2009;1027:1-20.
120 Cho HH, Park JW. Effect of coexisting compounds on the sorption and reduction of trichloroethylene with iron. Environ. Toxicol. Chem. 2005;24:11-16.   DOI   ScienceOn
121 Zhang WX, Wang CB, Lien HL. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 1998;40:387-395.   DOI   ScienceOn
122 Gavaskar AR. Design and construction techniques for permeable reactive barriers. J. Hazard. Mater. 1999;68:41-71.   DOI   ScienceOn
123 Henderson AD, Demond AH. Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ. Eng. Sci. 2007;24:401-423.   DOI   ScienceOn
124 Thiruvenkatachari R, Vigneswaran S, Naidu R. Permeable reactive barrier for groundwater remediation. J. Ind. Eng. Chem. 2008;14:145-156.   DOI   ScienceOn
125 Gillham RW, Ohannesin SF. Enhanced degradation of halogenated aliphatics by zero valent iron. Ground Water 1994;32:958-967.   DOI   ScienceOn
126 Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 1994;28:2045-2053.   DOI   ScienceOn
127 Ko SO, Lee DH, Kim YH. Kinetic studies of reductive dechlorination of chlorophenols with Ni/Fe bimetallic particles. Environ. Technol. 2007;28:583-593.   DOI
128 Johnson TL, Scherer MM, Tratnyek PG. Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 1996;30:2634-2640.   DOI   ScienceOn
129 Lien HL, Zhang WX. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf. A. Physicochem. Eng. Asp. 2001;191:97-105.   DOI   ScienceOn
130 McDowall L. Degradation of toxic chemicals by zero-valent metal nanoparticles--a literature review. Defence Science and Technology Organisation, Australia; 2005.
131 Wei J, Xu X, Liu Y, Wang D. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res. 2006;40:348-354.   DOI   ScienceOn
132 Deng S, Ma R, Yu Q, Huang J, Yu G. Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent. J. Hazard. Mater. 2008.
133 Mathialagan T, Viraraghavan T. Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresour. Technol. 2009;100:549-558.   DOI   ScienceOn
134 Jou CJ. Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy. J. Hazard. Mater. 2008;152:699-702.   DOI   ScienceOn
135 Zhang W, Quan X, Wang J, Zhang Z, Chen S. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. Chemosphere 2006;65:58-64.   DOI   ScienceOn
136 Lee SH, Carberry JB. Biodegradation of PCP enhanced by chemical oxidation pretreatment. Water Environ. Res 1992;64:682-690.   DOI
137 Boronina T, Klabunde KJ, Sergeev G. Destruction of organohalides in water using metal particles: carbon tetrachloride/water reactions with magnesium, tin, and zinc. Environ. Sci. Technol. 1995;29:1511-1517.   DOI   ScienceOn
138 Choi JH, Kim YH, Choi SJ. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: laboratory studies. Chemosphere 2007;67:1551-1557.   DOI   ScienceOn
139 Chen YC, Lan HX, Zhan HY, Fu SY. Simultaneous anaerobic-aerobic biodegradation of halogenated phenolic compound under oxygen-limited conditions. J. Environ. Sci. 2005;17:873-875.
140 Bokare AD, Choi W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 2009;43:7130-7135.   DOI   ScienceOn
141 Arning MD, Minteer SD. Electrode potentials. In: Zoski CG, ed. Handbook of electrochemistry. Boston: Elsevier; 2007. p. 813-827.
142 Speight JG. Lange's handbook of chemistry. 16th ed. New York: McGraw-Hill; 2005. p. 1572.
143 Morales J, Hutcheson R, Cheng IF. Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles. J. Hazard. Mater. 2002;90:97-108.   DOI   ScienceOn
144 Kim YH, Carraway ER. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ. Sci. Technol. 2000;34:2014-2017.   DOI   ScienceOn
145 Patel UD, Suresh S. Effects of solvent, pH, salts and resin fatty acids on the dechlorination of pentachlorophenol using magnesium-silver and magnesium-palladium bimetallic systems. J. Hazard. Mater. 2008;156:308-316.   DOI   ScienceOn
146 Cheng R, Zhou W, Wang JL, et al. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano-Ni and its size effect. J. Hazard. Mater. 2010;180:79-85.   DOI   ScienceOn
147 Choi JH, Choi SJ, Kim YH. Hydrodechlorination of 2,4,6-trichlorophenol for a permeable reactive barrier using zero-valent iron and catalyzed iron. Korean J. Chem. Eng. 2008;25:493-500.   과학기술학회마을   DOI
148 Choi JH, Kim YH. Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc. J. Hazard. Mater. 2009;166:984-991.   DOI   ScienceOn
149 Marshall WD, Kubatova A, Lagadec AJ, Miller DJ, Hawthorne SB. Zero-valent metal accelerators for the dechlorination of pentachlorophenol (PCP) in subcritical water. Green Chem. 2002;4:17-23.   DOI   ScienceOn
150 Estevinho BN, Ratola N, Alves A, Santos L. Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues. J. Hazard. Mater. 2006;137:1175-1181.   DOI   ScienceOn
151 Estevinho BN, Martins I, Ratola N, Alves A, Santos L. Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant. J. Hazard. Mater. 2007;143:535-540.   DOI   ScienceOn
152 Anotai J, Wuttipong R, Visvanathan C. Oxidation and detoxification of pentachlorophenol in aqueous phase by ozonation. J. Environ. Manage. 2007;85:345-349.   DOI   ScienceOn
153 Dai Y, Li F, Ge F, Zhu F, Wu L, Yang X. Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron. J. Hazard. Mater. 2006;137:1424-1429.   DOI   ScienceOn
154 Tamer E, Hamid Z, Aly AM, Ossama ET, Bo M, Benoit G. Sequential UV-biological degradation of chlorophenols. Chemosphere 2006;63:277-284.   DOI   ScienceOn