Anaerobic Reductive Dechlorination of Tetrachloroethylene (PCE) in Two-in-series Semi-continuous Soil Columns

반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 환원탈염소화

  • Ahn, Young-Ho (School of Civil and Environmental Engineering, Yeungnam University) ;
  • Choi, Jeong-Dong (School of Civil and Environmental Engineering, Yeungnam University) ;
  • Kim, Young (Dept. of Environmental Engineering, Korea University) ;
  • Kwon, Soo-Youl (Dept. of Environmental Health, Korea National Open University) ;
  • Park, Hoo-Won (GreenTech Environmental Consulting Co. Ltd.)
  • 안영호 (건설환경공학부, 영남대학교) ;
  • 최정동 (건설환경공학부, 영남대학교) ;
  • 김영 (환경시스템공학과, 고려대학교) ;
  • 권수열 (환경보건학과, 한국방송통신대학교) ;
  • 박후원 ((주)그린텍 환경컨설팅)
  • Published : 2006.04.01

Abstract

Anaerobic reductive dechlorination of tetrachloroethylene (PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate (as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. Dechlorination rate of PCE to cis-DCE was $0.62{\sim}1.94\;{\mu}mol$ PCE/L pore volume/d and $2.76\;{\mu}mol$ cis-DCE/ L pore volume/d for that for cis-DCE to ethylene, resulting that net dechlorination rate in the system was 1.43 umol PCE/L pore volume/d. During the degradation of cis-DCE to ethylene, the concentration of hydrogen in column groundwater was $22{\sim}29\;mM$ and $10{\sim}64\;mM$ for the degradation of PCE to cis-DCE. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through in-situ biological anaerobic reductive dechlorination processes.

실험실 규모의 반연속 흐름 2단 토양컬럼을 이용하여 사염화에틸렌(PCE)에서 에틸렌으로의 혐기성 환원 탈염소화 반응특성을 조사하였다. 국내의 TCE로 오염된 현장에서 토양을 채취하여 컬럼 반응조에 충진하고, lactate(전자공여체 그리고/혹은 탄소원으로서)와 PCE를 함유한 현장 지하수를 컬럼 반응조로 주입하였다. 운전초기 약 50일 경과기간 동안 유입 lactate와 PCE의 질량비는 620:1이었는데, 이때 PCE에서 cis-DCE로의 불완전한 환원성 탈염소화가 관찰되었다. 그러나 유입 lactate와 PCE의 질량비를 5,050:1로 증가시킨 두번째 운전기간동안 PCE에서 ethylene로의 완벽한 탈염소화를 관찰할 수 있었는데, 이는 초기 운전기간 동안의 적절한 전자공여체의 공급의 중요성을 보여 주었다. PCE에서 cis-DCE로의 탈염소화율은 $0.62{\sim}1.94\;{\mu}mol$ PCE/L pore volume/d이었고, cis-DCE에서 ethylene으로의 탈염소화율은 $2.76\;{\mu}mol$ cis-DCE/L pore volume/d으로 나타났다. 전체 시스템에서의 PCE에서 ethylene으로의 전환율은 $1.43\;{\mu}mol$ PCE/L pore volume/d이었다. 본 실험에서 PCE에서 cis-DCE로의 분해단계에서 수소의 농도는 $10{\sim}64\;mM$, 그리고 cis-DCE에서 에틸렌으로의 분해단계에서 수소의 농도는 $22{\sim}29\;mM$이었다. 본 연구에서의 이러한 긍정적인 실험 결과는 본 연구에서 조사된 TCE로 오염된 지하수의 현장 생물학적 복원을 위해 혐기성 환원 탈염소화 공정의 적용 가능성을 보여준다.

Keywords

References

  1. Alexander, M., 1994, Biodegradation and Bioremediation, Academic Press. CA, USA, 238-271
  2. Bradley, P.M., 2003, History and ecology of chloroethene biodegradation: a review. Bioremediation Journal, 7(2), 81-109 https://doi.org/10.1080/713607980
  3. Bradley, P.M. and Chapelle., F.H., 1999, Methane as a product of chloroethene biodegradation under methanogenic conditions. Environ. Sci. Technol. 33, 653-656 https://doi.org/10.1021/es981027+
  4. Bagley, D.M. and Gossett, J.M., 1990, Tetrachloroethene transformation to trichloroethene and cis-1,2-dichloroethene by sulfate- reducing enrichment cultures. Appl. Environ. Microbiol. 56, 2511-2516
  5. Chapelle, F.H, 2001, Groundwater Microbiology and Geochemistry. John Wiley & Sons, Inc., New York, USA, p. 403
  6. Chang, Y.C., Hatsu, M., Jung, K., Yoo, Y.S., Okeke, B.C., and Takamizawa, K., 2000, Characterization of a tetrachloroethylene degrading bacterium clostridium bifermentans DPH-1, Biosci. and Bioeng., 89(5), 489-491 https://doi.org/10.1016/S1389-1723(00)89102-1
  7. Fennell, D.E., Gossett, J.M., and Zinder, S.H., 1997, Comprison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ. Sci. Technol. 31, 918-926 https://doi.org/10.1021/es960756r
  8. Freedman, D.L. and Gossett, J.M., 1989, Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55, 2144-2151
  9. Gerritse, J., Drzyzga, O., Kloetstra, G.M., Keijmel, L., Wiersum, P., Huston, R., Collins, M.D., and Gottschal, J.C., 1999, Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri. TCE1. Appl. Environ. Microbiol. 65, 5212-5221
  10. Gerritse, J., Renard, V., Pedro Gomes, T.M., Lawson, P.A., Collins, M.D., and Gottschal, J.C., 1996, Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165, 132-140 https://doi.org/10.1007/s002030050308
  11. Gu, A.Z., Hedlund, P.P., Staley, J.T., Strand, S.E., and Stensel, H.D., 2004, Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis-DCE, Environ. Microbiol., 6(1), 45- 54 https://doi.org/10.1046/j.1462-2920.2003.00525.x
  12. Holliger, C., Hahn, D., Harmsen, H., Ludwig, W., Schumacher, W., Tindall, B., Vazquez, F., Weiss, N., and Zehnder, A.J.B., 1998, Dehalobacter restrictus gen. nov. and sp. Nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169, 313-321 https://doi.org/10.1007/s002030050577
  13. Krumholz, L.R., Sharp, R., and Fishbain, S.S., 1996, A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl. Environ. Microbiol. 62, 4108-4113
  14. Loffler, F.E., Sun, Q., Li, J., and Tiedje, J.M., 2000, 16S rDNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl. Environ. Microbiol., 66(4), 1369-1374 https://doi.org/10.1128/AEM.66.4.1369-1374.2000
  15. Loffler, F.E., Ritalahti, K.M., and Tiedje. J.M., 1997, Dechlorination of chloroethene is inhibited by 2-bromoethenaesulfonate in the absence of methanogens. Appl. Environ. Microbiol., 63, 4982-4985
  16. Maymo-Gatell, X., Chien, Y.T., Gossett, J.M., and Zinder, S.H., 1997, Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science. 276, 1568-1571 https://doi.org/10.1126/science.276.5318.1568
  17. Neumann, A., Wohlfarth, G, and Diekert, G, 1996, Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. Biol. Chem., 271(28), 16515- 16519 https://doi.org/10.1074/jbc.271.28.16515
  18. Sharma, P.K. and McCarty, P.L., 1996, Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl. Environ. Microbiol. 62,761-765
  19. Sung, Y., Ritalahti, K.M., Sanford, R.A., Urbance, J.W., Flynn, S.J., Tiedje, J.M., and Loffler F.E., 2003, Characterazation of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganesis sp. Nov, Appl. Environ. Microbiol., 69(5), 2694-2974
  20. U.S EPA, 1990, National water Quality Inventory, 1998 Report to Congress
  21. Vogel, T.M. and McCarty, P.L., 1985, Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinylchloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49, 1080-1083
  22. Wild, A., Hermann, R., and Leisinger, T., 1996, Isolation of anaerobic bacterium which reductively dechlorinate tetrachloroethene and trichloroethene. Biodegradation 7, 507-511 https://doi.org/10.1007/BF00115297
  23. 김영, 김진욱, 김정관, 하철윤, 이한웅, 하준수, 박후원, 안영호, 이 진우, 권수열, 2005, 사염화에틸렌으로 오염된 국내 4개 지역 지 하수내 사염화 에틸렌 탈염소화 활성 및 미생물 군집의 비교. 지 하수토양환경, 10(2), 52-58
  24. 환경부, 1995, '환경백서'