Browse > Article

Reductive Dechlorination of Chlorinated Phenols in Bio-electrochemical Process using an Electrode as Electron Donor  

Jeon, Hyun-Hee (Graduate School of Energy and Environment, Seoul National University of Technology)
Pak, Dae-Won (Graduate School of Energy and Environment, Seoul National University of Technology)
Publication Information
KSBB Journal / v.22, no.3, 2007 , pp. 134-138 More about this Journal
Abstract
It was investigated whether an electrode could serve as an electron donor for biological reductive dechlorination of chlorinated phenols in the bio-electrochemical process. There was no dechlorination in the absence of current and scanning electron microscope image showed that the electrode surface was covered with microorganisms. As a result, the electrode attached cells was responsible for reductive dechlorination. Also, initial high chlorinated phenol concentration such as $437mg/{\ell}$ was rapidly reduced within 5 hours. The maximum dechlorination rate using Monod equation was $5.95mg{\ell}$-h($cm^2$ (electrode surface area)) in the bio-electrochemical reactor.
Keywords
Electrode; electron donor; reductive dechlorination; bio-electrochemical process;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gibson, S. A. and J. M. Suflita (1986), Extrapolation of biodegradation results to groundwater aquifers: reductive dehulogenation of aromatic compounds, Appl. Environ. Microbiol. 52, 681-688
2 Lee, H. C., J. H. In, J. H. Kim, K. Y. Hwang, and C. H. Lee (2005), Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation, Kor. J. Chem. Eng. 22, 882-888   DOI
3 Kim, M. H. and O. J. Hao (1999), Cometabolic degradation of chlorophenols by Acinetobacter species, Water Res. 33, 562-574   DOI   ScienceOn
4 Bond, D. R. and D. R. Lovley (2003), Electricity Production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol, 69, 1548-1555   DOI
5 Mohn, W. Wl. and K. J. kennedy (1992), Limited degradation of chlorophenols by anaerobic sludge granules, Appl. Environ. Microbiol. 58, 2131-2136
6 Weber, E. J. (1996), Iron-mediated reductive transformations: investigation of reaction mechanism, Environ. Sci, Technol. 30, 716-719   DOI   ScienceOn
7 Hwang, H. M., R. E. Hodson, and R. F. Lee (1989), Degradation of phenol and chlorophenols sunlight and microbes in estuarine water, Environ. Sci. Technol. 20, 1002-1007   DOI   ScienceOn
8 Faya, F., P. M. Armenante, and D. Kafkewitz (1995), Aerobic degradation and dechlorination of 2-chlorophenol, 3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain, Lett. Appl. Microbiol. 21, 307-312   DOI   ScienceOn
9 Reddy, G. V., M D. Sollewijn Gelpke, and M. H. Gold (1998), Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination, J. Bacteriol. 180, 5159-5164
10 Armenante, P. M., D. Kafkewitz, G. A. Lewandowski, and C. J. Jou (1999), Anaerobic-aerobic treatment of halogenated phenolic compounds, Waler Res. 33, 681-692
11 ZHang, X. and J. Wiegel (1990), Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments, Appl. Environ. Microbiol. 56, 1119-1127
12 Mohn, W. W. and K. J. Kennedy (1992), Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1, Appl. Environ. Microbiol. 58, 1367-1370
13 Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim (2002), A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme microb. Technol, 30, 145-152   DOI   ScienceOn
14 Chaudhuri, S. K. am D. R. Lovley (2003), Electricity generation by direct oxidation of glucose in mediatorless rnicrobial fuel cells, Nature Biotechnol. 21, 1229-1232   DOI   ScienceOn
15 Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley (2002), Electrode-reducing microorganisms that harvest energy from marine sediments, Science 295, 483-485   DOI   ScienceOn
16 Steinle, P., G. Stucki, R. Stettler, and K. W. Hanselmann (1998), Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. Strain RK1, Appl. Environ. Microbiol. 64, 2566-2571
17 Cong, Y. Q., Z. C. Wu, and T. F. Tan (2005), Dechlorination by combined electrochemical reduction and oxidation, J. Zhejiang. Univ. Sci 68, 563-568
18 Gregory, K. B., D. R. Bond, and D. R. Lovley (2004), Graphite electrodes as electron donors for anaerobic respiration, Environ Microbiol. 6, 596-604   DOI   ScienceOn
19 Cheng, H., K. Scott, and P. A. Christensen (2004), Engineering aspects of electrochemical hydrodehalogenation of 2,4-dichlorophenol in a solid polymer electrolyte reactor, Appl. Catalysis. 261, 1-6   DOI   ScienceOn
20 Cheng, I. F., Q. Fernando, and N. Korte (1997), Electrochemical dechlorination of 4-chlorophenol to phenol, Environ. Sci, Technol. 31, 1074-1078   DOI   ScienceOn