• 제목/요약/키워드: Debinding

검색결과 67건 처리시간 0.026초

금속분말사출성형법으로 제조된 WC-10Co계 초경합금 소결체의 탄소첨가량에 따른 특성변화 (The Characteristic Changes of Sintered WC-10Co Fabricated by PIM Method with Different Carbon Content)

  • 강상대;박동욱;권영삼;조권구;안인섭
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.262-268
    • /
    • 2011
  • In order to investigate the microstructure and mechanical properties of WC-10 wt% Co insert tool alloy fabricated by PIM (Powder Injection Molding) process, the feedstock of WC-10 wt% and wax used as a kind of binder were mixed together by two blade mixer. After injection molding, the debinding process was carried out by two-steps. First, solvent extraction, in which the binder was eliminated by putting the specimen into normal hexane for 24 hrs at $60^{\circ}C$, and subsequently thermal debinding which was conducted at $260^{\circ}C$ and $480^{\circ}C$ for 6 hrs in the mixed gas of $H_2/N_2$, respectively. Meantime, in order to compensate the decarburization due to hydrogen, 1.2~1.8% of carbon was added to ensure the integrity of the phase. Finally, the specimens were sintered in vacuum under different temperatures, and the relative density of 99.8% and hardness of 2100 Hv can be achieved when sintered at $1380^{\circ}C$, even the TRS is lower than the conventional sintering process.

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권1호
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.

Optimization of Process Condition for Fe Nano Powder Injection Molding

  • Oh, Joo Won;Lee, Won Sik;Park, Seong Jin
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.223-228
    • /
    • 2017
  • Nanopowders provide better details for micro features and surface finish in powder injection molding processes. However, the small size of such powders induces processing challenges, such as low solid loading, high feedstock viscosity, difficulty in debinding, and distinctive sintering behavior. Therefore, the optimization of process conditions for nanopowder injection molding is essential, and it should be carefully performed. In this study, the powder injection molding process for Fe nanopowder has been optimized. The feedstock has been formulated using commercially available Fe nanopowder and a wax-based binder system. The optimal solid loading has been determined from the critical solid loading, measured by a torque rheometer. The homogeneously mixed feedstock is injected as a cylindrical green body, and solvent and thermal debinding conditions are determined by observing the weight change of the sample. The influence of the sintering temperature and holding time on the density has also been investigated. Thereafter, the Vickers hardness and grain size of the sintered samples have been measured to optimize the sintering conditions.

$H_{2}/N_{2}$ 혼합가스 혼합가스 소결분위기 변화가 사출성형한 Fe-Ni 혼합분말의 탄소량과 기계적 성질에 미치는 영향 (Effect of $H_{2}/N_{2}$ Sintering Atmosphere on the Carbon Content and Mechanical Properties in the Metal Injection Molding of Fe-Ni Mixed Powder)

  • 구광덕
    • 한국분말재료학회지
    • /
    • 제3권1호
    • /
    • pp.49-56
    • /
    • 1996
  • The effect of$H_{2}/N_{2}$gas sintering atmosphere on the carbon content and mechanical properties during the metal injection molding process of carbonyl iron-nickel powder was studied. The carbon content of the specimen after debinding in the pure$N_{2}$atmosphere appeared 0.78 wt%. After showing the maximum value of 1.48 wt.% in the debinding atmosphere of 10%$H_{2}/N_{2}$gas mixture, the carbon content of the debinded specimen decreased gradually with increasing the$H_2$content in the$H_{2}/N_{2}$gas mixture. The carbon contents of the sintered specimen were 0.46~0.63wt% in Na gas atmosphere, while they appeared extremely low above 40%$H_{2}/N_{2}$gas atmosphere. The relative sintered density increased abruptly from 88~90% to 93~96% with the addition of Ni, while the density nearly unchanged above 2% Ni addition. The sintered density increased with increasing the fraction of$H_{2} in H_{2}/N_{2}$gas mixture. Tensile strength and hardness increased, and elongation decreased with increasing carbon and Ni content. In spite of high carbon content of 0.63 wt%, the superior elongation value of 10% was shown.

  • PDF

커플링제로 처리된 질화규소 분말의 사출성형 (Injection Molding of Silicon Nitride Powders Treated with Coupling Agents)

  • 송휴섭
    • 한국세라믹학회지
    • /
    • 제30권2호
    • /
    • pp.131-138
    • /
    • 1993
  • The effects of silane coupling agents on the injection molding process were investigated using silicone nitride mixtrues with a binder system containing polypropylene as a major binder (55vol% solid loading). The formation of bonding between silicon nitride powder and coupling agents was confirmed through the analyses of powder surface. The use of coupling agents improved mixing characteristics judged by the torque change during mixing process. the coupling agents also reduced molten viscosity of the mixture considerably, which is a main factor to determine the flow of the mixture. However, the bonding between coupling agents and polymers had a negative effect on the debinding process by retarding the thermal decomposition.

  • PDF

Fabrication and Characterization of PZT Suspensions for Stereolithography based on 3D Printing

  • Cha, JaeMin;Lee, Jeong Woo;Bae, Byeonghoon;Lee, Seong-Eui;Yoon, Chang-Bun
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.360-364
    • /
    • 2019
  • PZT suspensions for photo-curable 3D printing were fabricated and their characteristics were evaluated. After mixing the PZT, photopolymer, photo-initiator, and dispersant for 10 min by using a high-shear mixer, the viscosity characteristics were investigated based on the powder content. To determine an appropriate dispersant content, the dispersant was mixed at 1, 3, and 5 wt% of the powder and a precipitation test was conducted for two hours. Consequently, it was confirmed that the dispersibility was excellent at 3 wt%. Through thermogravimetric analysis, it was confirmed that weight reduction occurred in the photopolymer between 120? and 500?, thereby providing a debinding heat treatment profile. The fabricated suspensions were cured using UV light, and the polymer was removed through debinding. Subsequently, the density and surface characteristics were analyzed by using the Archimedes method and field-emission scanning electron microscopy. Consequently, compared with the theoretical density, an excellent characteristic of 97% was shown at a powder content of 87 wt%. Through X-ray diffraction analysis, it was confirmed that the crystallizability improved as the solid content increased. At the mixing ratio of 87 wt% powder and 13 wt% photo-curable resin, the viscosity was 3,100 cps, confirming an appropriate viscosity characteristic as a stereolithography suspension for 3D printing.

Fabrication of Equiatomic CoCrFeMnNi High-Entropy Alloy by Metal Injection Molding Process Using Coarse-Sized Powders

  • Eun Seong Kim;Jae Man Park;Ji Sun Lee;Jungho Choe;Soung Yeoul Ahn;Sang Guk Jeong;Do Won Lee;Seong Jin Park;Hyoung Seop Kim
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.1-6
    • /
    • 2023
  • High-entropy alloys (HEAs) are attracting attention because of their excellent properties and functions; however, they are relatively expensive compared with commercial alloys. Therefore, various efforts have been made to reduce the cost of raw materials. In this study, MIM is attempted using coarse equiatomic CoCrFeMnNi HEA powders. The mixing ratio (powder:binder) for HEA feedstock preparation is explored using torque rheometer. The block-shaped green parts are fabricated through a metal injection molding process using feedstock. The thermal debinding conditions are explored by thermogravimetric analysis, and solvent and thermal debinding are performed. It is densified under various sintering conditions considering the melting point of the HEA. The final product, which contains a small amount of non-FCC phase, is manufactured at a sintering temperature of 1250℃.