• Title/Summary/Keyword: Deadbeat current control

Search Result 44, Processing Time 0.024 seconds

Improvement of Responsivity of Unified Power Flow Controller in Digital Control System

  • Hamasaki, Shin-ichi;Miyazaki, Shinya;Takaki, Tsuyoshi;Tsuji, Mineo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.3
    • /
    • pp.354-361
    • /
    • 2014
  • The Unified Power Flow Controller (UPFC) can flexibly manage power flow and maintain line voltage. The UPFC consists of two inverters in parallel side and series side. In parallel side, the reactive power can be compensated to improve the power factor. In series side, the voltage drop can be compensated to maintain proper line voltage. It is necessary for the operation in both sides to output the current and the voltage quickly and accurately. As the method for the UPFC control, the deadbeat control with state observer is applied. The deadbeat control is able to realize a quick response of the current and voltage control for only a sampling period compared with the general PI control. A principle and simulation results are presented in this paper.

Robust control of End order deadbeat current controller considering calculation time delay for UPS inverter (연산시간지연을 고려한 UPS 인버터용 2차 데드비트 전류 제어기의 강인 제어)

  • Kim, Byoung-Jin;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1056-1058
    • /
    • 2000
  • Deadbeat technique has been proposed as a digital controller for an UPS inverter to achieve the fast response to a load variation and to conserve a very low THD under a nonlinear load condition. This scheme contains a fatal drawback, sensitivity against parameter variation and calculation time delay. This paper proposes a second order deadbeat current controller, which fundamentally solves the calculation time delay problem and certainly guarantees the robustness of the parameter's variation. This is shown theoretically and practically through simulation and experiment.

  • PDF

Internal Model Control of UPS Inverter with Robustness of Calculation Time Delay and Parameter Variation (연산지연시간과 파라미터 변동에 강인한 UPS 인버터의 내부모델제어)

  • Park, Jee-Ho;Keh, Joong-Eup;Kim, Dong-Wan;An, Young-Joo;Park, Han-Seok;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.175-185
    • /
    • 2002
  • In this paper, a new fully digital current control method of UPS inverter, which is based on an internal model control, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The internal model controller is adopted to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. That is, the average current of filter capacitor is been exactly equal to the reference current with a time lag of two sampling intervals. Therefore, this method has an essentially overshoot free reference-to-output response with a minimum possible rise time. The effectiveness of the proposed control system has been verified by the simulation and experimental respectively. From the simulation and experimental results, the proposed system is achieved the robust characteristics to the calculation time delay and parameter variation as well as very fast dynamic performance, thus it can be effectively applied to the power supply for the critical load.

Improved Direct Torque Control for Sensorless Matrix Converter Drives with Constant Switching Frequency and Torque Ripple Reduction

  • Lee Kyo-Beum;Blaabjerg Frede
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.113-123
    • /
    • 2006
  • In this paper, an improved direct torque control (DTC) method for sensorless matrix converter drives is proposed which enables to minimize torque ripple, to obtain unity input power factor, and to achieve good sensorless speed-control performance in the low speed operation, while maintaining constant switching frequency and fast torque dynamics. It is possible to combine the advantages of matrix converters with the advantages of the DTC strategy using space vector modulation and a flux deadbeat controller. To overcome the phase current distortion by the non-linearity of a matrix converter drive, the simple non-linearity compensation method using PQR power theory are presented in the proposed scheme. Experimental results are shown to illustrate the feasibility of the proposed strategy.

Quasi-Deadbeat Minimax Estimation for Deterministic Generic Linear Models

  • Lee, Kwan-Ho;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.45.5-45
    • /
    • 2002
  • In this paper, a quasi-deadbeat minimax estimation (QME) is proposed as a new class of time-domain parameter estimations for deterministic generic linear models. Linearity, quasi-deadbeat property, FIR structure, and independency of the initial parameter information will be required in advance, in addition to a new performance criterion of a worst case gain between the disturbances and the current estimation error. The proposed QME is obtained in a closed form by directly solving an optimization problem. The QME is represented in both a batch form and an iterative form. A fast algorithm for the suggested estimation is also presented, which is remarkable in view...

  • PDF

Fault Diagnosis and Fault-Tolerant Control of DC-link Voltage Sensor for Two-stage Three-Phase Grid-Connected PV Inverters

  • Kim, Gwang-Seob;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.752-759
    • /
    • 2013
  • This paper proposes a method for fault diagnosis and fault-tolerant control of DC-link voltage sensor for two-stage three-phase grid-connected PV inverters. Generally, the front-end DC-DC boost converter tracks the maximum power point (MPP) of PV array and the rear-end DC-AC inverter is used to generate a sinusoidal output current and keep the DC-link voltage constant. In this system, a sensor is essential for power conversion. A sensor fault is detected when there is an error between the sensed and estimated values, which are obtained from a DC-link voltage sensorless algorithm. Fault-tolerant control is achieved by using the estimated values. A deadbeat current controller is used to meet the dynamic characteristic of the proposed algorithm. The proposed algorithm is validated by simulation and experiment results.

Advanced Control of a PWM Converter with a Variable-Speed Induction Generator

  • Ahmedt, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo;Tanaka, Toshihiko
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.97-108
    • /
    • 2007
  • This paper describes simple control structures for a vector controlled stand-alone induction generator (IG) for use under variable speeds. Different control principles, indirect vector control and deadbeat current control, are developed for a voltage source PWM converter and the three-phase variable speed squirrel-cage IG to regulate DC-link and generator voltages with a newly designed phase locked loop circuit. The required reactive power for the variable speed IG is supplied by means of a PWM converter and a capacitor bank to buildup the voltage of the IG without the need for a battery, to reduce the rating of the PWM converter while using only three sensors and to eliminate the harmonics generated by the PWM converter. These proposed schemes can be used efficiently for variable speed wind energy conversion systems. The measurements of the IG systems at various speeds and loads are given and show that these systems are capable of good AC and DC voltage regulation.

A New Current Controller for PWM Converters (PWM Converter의 새로운 전류제어기)

  • Lee, J.W.;Min, J.J.;Baek, S.K.;Kang, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.410-412
    • /
    • 1995
  • From the cost-effective product point of view, it is very important to design a new current controller with the highest utilization factor of current capacity of power devices. This paper deals with a state-deadbeat current controller for PWM converters, which shows the fastest current control response without overshoot irrespective of the saturation of control voltage. No-overshoot control response means that the current capacity could be fully utilized in the control sense. Simulational results done by Matlab's Simulink show good current control characteristics.

  • PDF

Design of Robust Double Digital Controller to Improve Performance for UPS Inverter (UPS 인버터의 성능 개선을 위한 강인한 2중 디지털 제어기의 설계)

  • 박지호;노태균;김춘삼;안인모;우정인
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.116-127
    • /
    • 2003
  • In this paper, a new fully digital control method for UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. In the proposed control system, overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The inner current control loop is adopted by an Internal model controller The Internal model controller is designed to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. The outer voltage control loop employing P-Resonance controller is proposed. The resonance controller has an infinite gain at resonant frequency, and the resonant frequency is set to the fundamental frequency of the reference voltage in this paper. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been verified by the simulation and experimental results respectively.

Development of Constant Output Power Supply System for Ozonizer (오존발생장치용 정출력 전원장치의 개발)

  • Woo, Jung-In;Woo, Sung-Hoon;Roh, In-Bae;Park, Jee-Ho;Kim, Dong-Wan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.113-121
    • /
    • 2005
  • In this paper, a constant output power supply system for ozonizer is proposed to remove the noise of ozonizer and control the output of ozonizer using feedback control. The proposed system is based on the rouble control loop such as the outer voltage control loop and inner current control loop. In the proposed system overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The inner current control loop is adopted by an internal model controller. The internal model controller is designed to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. The outer voltage control loop employing P-Resonance controller is proposed. The resonance controller has an infinite gain at resonant frequency, and the resonant frequency is set to the fundamental frequency of the reference voltage in this paper. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been verified by the experimental results.