• Title/Summary/Keyword: Data-Recycling Adaptive Transversal Filter

Search Result 11, Processing Time 0.028 seconds

The Improvement of Adaptive Transversal Filter with Data-Recycling LMS Algorithms Convergence Speed (데이터-재순환 최소 평균 자승 알고리즘을 이용한 적응 횡단선 필터의 수렴속도 개선)

  • Oh, Seung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.224-229
    • /
    • 2009
  • In this paper, an efficient signal interference control technique to improve the convergence speed of Adaptive transversal filter with LMS algorithm is introduced. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, are analyzed to prove theoretically the improvement of convergence speed. According as the step-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Increasing the eigenvalue spread has the effect of controlling down the rate of convergence of the adaptive equalizer and also increasing the steady-state value of the average squared error and also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS Algorithms.

  • PDF

The Improvement of High Convergence Speed using LMS Algorithm of Data-Recycling Adaptive Transversal Filter in Direct Sequence Spread Spectrum (직접순차 확산 스펙트럼 시스템에서 데이터 재순환 적응 횡단선 필터의 LMS 알고리즘을 이용한 고속 수렴 속도 개선)

  • Kim, Gwang-Jun;Yoon, Chan-Ho;Kim, Chun-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.22-33
    • /
    • 2005
  • In this paper, an efficient signal interference control technique to improve the high convergence speed of LMS algorithms is introduced in the adaptive transversal filter of DS/SS. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, is analyzed to prove theoretically the improvement of high convergence speed. According as the step-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Also, an increase in the stop-size parameter ${\mu}$ has the effect of reducing the variation in the experimentally computed learning curve. Increasing the eigenvalue spread has the effect of controlling which is downed the rate of convergence of the adaptive equalizer. Increasing the steady-state value of the average squared error, proposed algorithm also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS technique.

Improvement of LMS Algorithm Convergence Speed with Updating Adaptive Weight in Data-Recycling Scheme (데이터-재순환 구조에서 적응 가중치 갱신을 통한 LMS 알고리즘 수렴 속 도 개선)

  • Kim, Gwang-Jun;Jang, Hyok;Suk, Kyung-Hyu;Na, Sang-Dong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.4
    • /
    • pp.11-22
    • /
    • 1999
  • Least-mean-square(LMS) adaptive filters have proven to be extremely useful in a number of signal processing tasks. However LMS adaptive filter suffer from a slow rate of convergence for a given steady-state mean square error as compared to the behavior of recursive least squares adaptive filter. In this paper an efficient signal interference control technique is introduced to improve the convergence speed of LMS algorithm with tap weighted vectors updating which were controled by reusing data which was abandoned data in the Adaptive transversal filter in the scheme with data recycling buffers. The computer simulation show that the character of convergence and the value of MSE of proposed algorithm are faster and lower than the existing LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of LMS algorithm.

An Improvement of Convergence Speed with Recycling Buffer in Adaptive Transversal Filter (적응 횡단선 필터에서 재순환 버퍼를 이용한 수렴속도 개선)

  • 김원균;임경모;김광준;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.574-577
    • /
    • 1998
  • In this paper, a new simple and efficient technique to improve the convergence speed of LMS algorithm is proposed in an interference-limited multi-path fading environment as encountered in indoor wireless communications. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, are analyzed to prove theoretically the improvement of convergence speed. The theoretical analysis shows that the data-recycling in technique can increase convergence speed by (B+1) times without increasing the computational complexity substantially where B is the number of recycled data. The results of the computer simulation demonstrate that the simulation results are in accordance with the theoretical analysis and the superiority of the filter algorithm.

  • PDF

A study on the Improved Convergence Characteristic over Weight Updating of Recycling Buffer RLS Algorithm (재순환 버퍼 RLS 알고리즘에서 가중치 갱신을 이용한 개선된 수렴 특성에 관한 연구)

  • 나상동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.830-841
    • /
    • 2000
  • We extend the sue of the method of least square to develop a recursive algorithm for the design of adaptive transversal filters such that, given the least-square estimate of this vector of the filter at iteration n-1, we may compute the updated estimate of this vector at iteration a upon the arrival of new data. We begin the development of the RLS algorithm by reviewing some basic relations that pertain to the method of least squares. Then, by exploiting a relation in matrix algebra known as the matrix inversion lemma, we develop the RLS algorithm. An important feature of the RLS algorithm is that it utilizes information contained in the input data, extending back to the instant of time when the algorithm is initiated. In this paper, we propose new tap weight updated RLS algorithm in adaptive transversal filter with data-recycling buffer structure. We prove that convergence speed of learning curve of RLS algorithm with data-recycling buffer is faster than it of exiting RL algorithm to mean square error versus iteration number. Also the resulting rate of convergence is typically an order of magnitude faster than the simple LMS algorithm. We show that the number of desired sample is portion to increase to converge the specified value from the three dimension simulation result of mean square error according to the degree of channel amplitude distortion and data-recycle buffer number. This improvement of convergence character in performance, is achieved at the (B+1)times of convergence speed of mean square error increase in data recycle buffer number with new proposed RLS algorithm.

  • PDF

The Improvement of Convergence Characteristic using the New RLS Algorithm in Recycling Buffer Structures

  • Kim, Gwang-Jun;Kim, Chun-Suck
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-698
    • /
    • 2003
  • We extend the sue of the method of least square to develop a recursive algorithm for the design of adaptive transversal filters such that, given the least-square estimate of this vector of the filter at iteration n-l, we may compute the updated estimate of this vector at iteration n upon the arrival of new data. We begin the development of the RLS algorithm by reviewing some basic relations that pertain to the method of least squares. Then, by exploiting a relation in matrix algebra known as the matrix inversion lemma, we develop the RLS algorithm. An important feature of the RLS algorithm is that it utilizes information contained in the input data, extending back to the instant of time when the algorithm is initiated. In this paper, we propose new tap weight updated RLS algorithm in adaptive transversal filter with data-recycling buffer structure. We prove that convergence speed of learning curve of RLS algorithm with data-recycling buffer is faster than it of exiting RLS algorithm to mean square error versus iteration number. Also the resulting rate of convergence is typically an order of magnitude faster than the simple LMS algorithm. We show that the number of desired sample is portion to increase to converge the specified value from the three dimension simulation result of mean square error according to the degree of channel amplitude distortion and data-recycle buffer number. This improvement of convergence character in performance, is achieved at the B times of convergence speed of mean square error increase in data recycle buffer number with new proposed RLS algorithm.

The Impovement of Convergence Speed in Real Time Vital Sign Information Management System in Patient Monitoring Systems (적응 횡단선 필터의 등화기에서 수렴속도 개선)

  • Lim, Se-jeong;Kim, Gwang-jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.88-94
    • /
    • 2013
  • In this paper, an efficient signal interference control technique to improve the convergence speed of LMS algorithm is introduced. The convergence characteristics of the proposed algorithm,whose coefficients are multiply adapted in a symbol time period by recycling the received data,are analyzed to prove theoretically the improvement of convergence speed. According as thestep-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Increasing the eigenvalue spread has the effect of controlling down the rate of convergence of the adaptive equalizer and also increasing the steady-state value of the average squared error and also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS technique.

A Distributed Web-DSS Approach for Coordinating Interdepartmental Decisions - Emphasis on Production and Marketing Decision (부서간 의사결정 조정을 위한 분산 웹 의사결정지원시스템에 관한 연구)

  • 이건창;조형래;김진성
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.291-300
    • /
    • 1999
  • 인터넷을 기반으로 한 정보통신의 급속한 발전이라는 기업환경의 변화에 적응하기 위해서 기업은 점차 모든 경영시스템을 인터넷을 기반으로 하도록 변화시키고 있을 뿐만 아니라, 기업 조직 또한 전세계를 기반으로한 글로벌 기업 형태로 변화하고 있다. 이러한 급속한 경영환경의 변화로 인해서 기업 내에서는 종전과는 다른 형태의 부서간 상호의사결정조정 과정이 필요하게 되었다. 일반 기업들을 대상으로 한 상호의사결정의 지원과정에 대해서는 기존에 많은 연구들이 있었으나 글로벌기업과 같은 네트워크 형태의 새로운 형태의 기업에 있어서의 상호의사결정과정을 지원할 수 있는 의사결정지원시스템에 대해서는 단순한 그룹의사결정지원시스템 또는 분산의사결정지원시스템과 같은 연구들이 주를 이루고 있다. 따라서 본 연구에서는 인터넷 특히, 웹을 기반으로 한 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 기업의 글로벌경영 및 분산 경영에서 비롯되는 부서간 상호의사결정이라는 문제를 효율적으로 지원할 수 있는 메커니즘을 제시하고 이에 기반한 프로토타입 형태의 시스템을 구현하여 성능을 검증하고자 한다. 특히, 기업 내에서 가장 대표적으로 상호의사결정지원이 필요한 생산과 마케팅 부서를 대상으로 상호의사결정지원 메커니즘을 개발하고 실험을 진행하였다. 그 결과 글로벌 기업내의 생산과 마케팅 부서간 상호의사결정을 효율적으로 지원 할 수 있는 상호조정 메카니즘인 개선된 PROMISE(PROduction and Marketing Interface Support Environment)를 기반으로 한 웹 분산의사결정지원시스템 (Web-DSS : Web-Decision Support Systems)을 제안하는 바이다.자대상 벤처기업의 선정을 위한 전문가시스템을 구축중이다.의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer

  • PDF

투자대상 벤처기업의 선정을 위한 전문가시스템 개발

  • 김성근;김지혜
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.139-148
    • /
    • 1999
  • 오늘날 기술집약적인 벤처기업들에 대한 관심이 집중되고 있다. 소수의 진취적인 벤처기업들이 기술개발 및 신상품 개발 등 두드러진 활약을 보이고 있기 때문이다. 그러나 실제 이 벤처기업의 성공 가능성은 그렇게 높지 않다. 특히 벤처기업 환경이 아직 미약한 국내의 경우 위험부담이 훨씬 더 크다. 이러한 벤처기업 환경에서 투자대상 벤처기업을 선정하는 것은 매우 전략적인 의사결정이다. 일반적으로 일반 벤처투자가들은 관심이 있는 산업에 해당하는 기업의 사업계획서와 기초적인 관련 정보를 토대로 투자여부를 결정한다. 그렇지만 실제로는 이와 같은 분석에 필수적으로 요구되는 정보가 불확실할 뿐만 아니라 기술분야에 대한 전문적 지식도 부족하기 때문에 투자 여부를 결정하는 것은 매우 복잡하고 어려운 문제이다. 그러므로 투자대상 벤처기업의 선정을 효과적으로 지원해주는 체계적인 접근이 필요하다. 특히 벤처 사업과 관련된 기술 동향 및 수준 등에 관련된 전문 지식과 경험이 체계적으로 제공되어야 하고 또한 벤처 투자가의 개인적 경험과 판단이 평가 프로세스에 직접적으로 반영될 수 있어야 한다. 이에 본 연구에서는 전문가의 지식과 경험을 체계화하고 투자가의 개인적 판단을 효과적으로 수용할 수 있는 전문가시스템의 접근방법을 제시하고자 한다. 투자대상 벤처기업의 선정을 위한 전문가시스템을 구축하기 위해 본 연구에서는 다양한 정보수집 과정을 거쳤다. 우선 벤처 투자와 관련된 기존 문헌을 심층 분석하였으며 아울러 벤처 투자 업계에서 활약중인 전문 벤처캐피탈리스트들과의 수차례 인터뷰를 통해 벤처기업 평가의 주요 요인과 의사결정 과정을 파악할 수 있었다. 이러한 과정을 통하여 본 연구에서는 벤처 투자의 90%를 차지하는 정보통신분야에 속한 기법 중에서 투자대상 벤처기업의 선정을 위한 전문가시스템을 구축중이다.의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and in

  • PDF

On the Development of Agent-Based Online Game Characters (에이전트 기반 지능형 게임 캐릭터 구현에 관한 연구)

  • 이재호;박인준
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.379-384
    • /
    • 2002
  • 개발적인 측면에서 온라인 게임 환경에서의 NPC(Non Playable Character)들은 환경인식능력, 이동능력, 특수 능력 및 아이템의 소유 배분 등을 원활히 하기 위한 능력들을 소유해야 하며, 게임 환경을 인식, 저장하기 위한 데이터구조와 자신만의 독특한 임무(mission)를 달성하기 위한 계획을 갖고 행위를 해야 한다. 이런 의미에서 NPC는 자신만의 고유한 규칙과 행동 패턴, 그리고 목표(Goal)와 이를 실행하기 위한 계획(plan)을 소유하는 에이전트로 인식되어야 할 것이다. 그러나, 기존 게임의 NPC 제어 구조나 구현 방법은 이러한 요구조건에 부합되지 못한 부분이 많았다. C/C++ 같은 컴퓨터 언어들을 이용한 구현은 NPC의 유연성이나, 행위에 많은 문제점이 있었다. 이들 언어의 switch 문법은 NPC의 몇몇 특정 상태를 묘사하고, 그에 대한 행위를 지정하는 방법으로 사용되었으나, 게임 환경이 복잡해지면서, 더욱더 방대한 코드를 만들어야 했고, 해석하는데 많은 어려움을 주었으며, 동일한 NPC에 다른 행동패턴을 적용시키기도 어려웠다. 또한, 대부분의 제어권을 게임 서버 폭에서 도맡아 함으로써, 서버측에 많은 과부하 요인이 되기도 하였다. 이러한 어려움을 제거하기 위해서 게임 스크립트를 사용하기도 하였지만, 그 또한 단순 반복적인 패턴에 사용되거나, 캐릭터의 속성적인 측면만을 기술 할 수 있을 뿐이었다 이러한 어려움을 해소하기 위해서는 NPC들의 작업에 필요한 지식의 계층적 분화를 해야 하고, 현재 상황과 목표 변화에 적합한 반응을 표현할 수 있는 스크립트의 개발이 필수 적이라 할 수 있다 또한 스크립트의 실행도 게임 서버 측이 아닌 클라이언트 측에서 수행됨으로써, 서버에 걸리는 많은 부하를 줄일 수 있어야 할 것이다. 본 논문에서는, 대표적인 반응형 에이전트 시스템인 UMPRS/JAM을 이용하여, 에이전트 기반의 게임 캐릭터 구현 방법론에 대해 알아본다.퓨터 부품조립을 사용해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having

  • PDF