• Title/Summary/Keyword: Data partitioning

Search Result 388, Processing Time 0.045 seconds

A Measurement Allocation for Reliable Data Gathering in Spatially Corrected Sensor Networks (공간상관 센서필드에서 측정 스케쥴링)

  • Byun, Sang-Seon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.399-402
    • /
    • 2017
  • We consider an sensor partitioning problem for energy-efficient measurement scheduling in a spatially correlated sensor field where sensors are located randomly. We divide the whole sensors into subsets of k sensors in the way of letting each subset give similar amount of mutual information. Then it allows more prolonged life time of the sensor field than measuring the sensors that gives most information only. To this end, we compute the Shapley value of each sensor and compose the subsets so that each subset can have total Shapley value similar with the other subsets.

  • PDF

A design of a tool to verify completeness and consistency of object - oriented analysis (객체지향 분석의 완전성과 일관성 검증을 위한 툴의설계)

  • Kim, Chi-Su;Jin, Young-Jin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2453-2460
    • /
    • 1997
  • Among the method of developing software there are many object-oriented analysis(OOA) techniques, and the new ones are being introduced continuously. The present OOA techniques, however, have difficulty in the identification and the verification of the objects and tend to ignore high-level control aspects of the problem due to the initial partitioning of them on the basis of the data. As a result, it brings inaccurate understanding and faults in the software which is required by users. Therefore the purpose of this paper is to design the TOVERC to verify completeness and consistency through cross-reference between the state transition diagram and the methods of object model in order to reflect the requirements of users in the analysis of software considering this problem.

  • PDF

Improvement of the subcooled boiling model using a new net vapor generation correlation inferred from artificial neural networks to predict the void fraction profiles in the vertical channel

  • Tae Beom Lee ;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4776-4797
    • /
    • 2022
  • In the one-dimensional thermal-hydraulic (TH) codes, a subcooled boiling model to predict the void fraction profiles in a vertical channel consists of wall heat flux partitioning, the vapor condensation rate, the bubbly-to-slug flow transition criterion, and drift-flux models. Model performance has been investigated in detail, and necessary refinements have been incorporated into the Safety and Performance Analysis Code (SPACE) developed by the Korean nuclear industry for the safety analysis of pressurized water reactors (PWRs). The necessary refinements to models related to pumping factor, net vapor generation (NVG), vapor condensation, and drift-flux velocity were investigated in this study. In particular, a new NVG empirical correlation was also developed using artificial neural network (ANN) techniques. Simulations of a series of subcooled flow boiling experiments at pressures ranging from 1 to 149.9 bar were performed with the refined SPACE code, and reasonable agreement with the experimental data for the void fraction in the vertical channel was obtained. From the root-mean-square (RMS) error analysis for the predicted void fraction in the subcooled boiling region, the results with the refined SPACE code produce the best predictions for the entire pressure range compared to those using the original SPACE and RELAP5 codes.

Microservice Identification by Partitioning Monolithic Web Applications Based on Use-Cases

  • Si-Hyun Kim;Daeil Jung;Norhayati Mohd Ali;Abu Bakar Md Sultan;Jaewon Oh
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.268-280
    • /
    • 2023
  • Several companies have migrated their existing monolithic web applications to microservice architectures. Consequently, research on the identification of microservices from monolithic web applications has been conducted. Meanwhile, the use-case model plays a crucial role in outlining the system's functionalities at a high level of abstraction, and studies have been conducted to identify microservices by utilizing this model. However, previous studies on microservice identification utilizing use-cases did not consider the components executed in the presentation layer. Unlike existing approaches, this paper proposes a technique that considers all three layers of web applications (presentation, business logic, and data access layers). Initially, the components used in the three layers of a web application are extracted by executing all the scenarios that constitute its use-cases. Thereafter, the usage rate of each component is determined for each use-case and the component is allocated to the use-case with the highest rate. Then, each use-case is realized as a microservice. To verify the proposed approach, microservice identification is performed using open-source web applications.

Voltage-Frequency-Island Aware Energy Optimization Methodology for Network-on-Chip Design (전압-주파수-구역을 고려한 에너지 최적화 네트워크-온-칩 설계 방법론)

  • Kim, Woo-Joong;Kwon, Soon-Tae;Shin, Dong-Kun;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.22-30
    • /
    • 2009
  • Due to high levels of integration and complexity, the Network-on-Chip (NoC) approach has emerged as a new design paradigm to overcome on-chip communication issues and data bandwidth limits in conventional SoC(System-on-Chip) design. In particular, exponentially growing of energy consumption caused by high frequency, synchronization and distributing a single global clock signal throughout the chip have become major design bottlenecks. To deal with these issues, a globally asynchronous, locally synchronous (GALS) design combined with low power techniques is considered. Such a design style fits nicely with the concept of voltage-frequency-islands (VFI) which has been recently introduced for achieving fine-grain system-level power management. In this paper, we propose an efficient design methodology that minimizes energy consumption by VFI partitioning on an NoC architecture as well as assigning supply and threshold voltage levels to each VFI. The proposed algorithm which find VFI and appropriate core (or processing element) supply voltage consists of traffic-aware core graph partitioning, communication contention delay-aware tile mapping, power variation-aware core dynamic voltage scaling (DVS), power efficient VFI merging and voltage update on the VFIs Simulation results show that average 10.3% improvement in energy consumption compared to other existing works.

A Hybrid Approach for Automated Building Area Extraction from High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 자동화된 건물 영역 추출 하이브리드 접근법)

  • An, Hyowon;Kim, Changjae;Lee, Hyosung;Kwon, Wonsuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.545-554
    • /
    • 2019
  • This research aims to provide a building area extraction approach over the areas where data acquisition is impossible through field surveying, aerial photography and lidar scanning. Hence, high-resolution satellite images, which have high accessibility over the earth, are utilized for the automated building extraction in this study. 3D point clouds or DSM (Digital Surface Models), derived from the stereo image matching process, provides low quality of building area extraction due to their high level of noises and holes. In this regards, this research proposes a hybrid building area extraction approach which utilizes 3D point clouds (from image matching), and color and linear information (from imagery). First of all, ground and non-ground points are separated from 3D point clouds; then, the initial building hypothesis is extracted from the non-ground points. Secondly, color based building hypothesis is produced by considering the overlapping between the initial building hypothesis and the color segmentation result. Afterwards, line detection and space partitioning results are utilized to acquire the final building areas. The proposed approach shows 98.44% of correctness, 95.05% of completeness, and 1.05m of positional accuracy. Moreover, we see the possibility that the irregular shapes of building areas can be extracted through the proposed approach.

A Study on Elementary School Students' Understanding of Fractions (초등학생의 분수이해에 관한 연구)

  • 권성룡
    • School Mathematics
    • /
    • v.5 no.2
    • /
    • pp.259-273
    • /
    • 2003
  • A fraction is one of the most important concepts that students have to learn in elementary school. But it is a challenge for students to understand fraction concept because of its conceptual complexity. The focus of fraction learning is understanding the concept. Then the problem is how we can facilitate the conceptual understanding and estimate it. In this study, Moore's concept understanding scheme(concept definition, concept image, concept usage) was adopted as an theoretical framework to investigate students' fraction understanding. The questions of this study were a) what concept image do students have\ulcorner b) How well do students solve fraction problems\ulcorner c) How do students use fraction concept to generate fraction word problem\ulcorner By analyzing the data gathered from three elementary school, several conclusion was drawn. 1) The students' concept image of fraction is restricted to part-whole sub-construct. So is students' fraction understanding. 2) Students can solve part-whole fraction problems well but others less. This also imply that students' fraction understanding is partial. 3) Half of the subject(N=98) cannot pose problems that involve fraction and fraction operation. And some succeeded applied the concept mistakenly. To understand fraction, various fraction subconstructs have to be integrated as whole one. To facilitate this integration, fraction program should focus on unit, partitioning and quantity. This may be achieved by following activities: * Building on informal knowledge of fraction * Focusing on meaning other than symbol * Various partitioning activities * Facing various representation * Emphasizing quantitative aspects of fraction * Understanding the meanings of fraction operation Through these activities, teacher must help students construct various faction concept image and apply it to meaningful situation. Especially, to help students to construct various concept image and to use fraction meaningfully to pose problems, much time should be spent to problem posing using fraction.

  • PDF

Accelerated Loarning of Latent Topic Models by Incremental EM Algorithm (점진적 EM 알고리즘에 의한 잠재토픽모델의 학습 속도 향상)

  • Chang, Jeong-Ho;Lee, Jong-Woo;Eom, Jae-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.12
    • /
    • pp.1045-1055
    • /
    • 2007
  • Latent topic models are statistical models which automatically captures salient patterns or correlation among features underlying a data collection in a probabilistic way. They are gaining an increased popularity as an effective tool in the application of automatic semantic feature extraction from text corpus, multimedia data analysis including image data, and bioinformatics. Among the important issues for the effectiveness in the application of latent topic models to the massive data set is the efficient learning of the model. The paper proposes an accelerated learning technique for PLSA model, one of the popular latent topic models, by an incremental EM algorithm instead of conventional EM algorithm. The incremental EM algorithm can be characterized by the employment of a series of partial E-steps that are performed on the corresponding subsets of the entire data collection, unlike in the conventional EM algorithm where one batch E-step is done for the whole data set. By the replacement of a single batch E-M step with a series of partial E-steps and M-steps, the inference result for the previous data subset can be directly reflected to the next inference process, which can enhance the learning speed for the entire data set. The algorithm is advantageous also in that it is guaranteed to converge to a local maximum solution and can be easily implemented just with slight modification of the existing algorithm based on the conventional EM. We present the basic application of the incremental EM algorithm to the learning of PLSA and empirically evaluate the acceleration performance with several possible data partitioning methods for the practical application. The experimental results on a real-world news data set show that the proposed approach can accomplish a meaningful enhancement of the convergence rate in the learning of latent topic model. Additionally, we present an interesting result which supports a possible synergistic effect of the combination of incremental EM algorithm with parallel computing.

GIS-based Data-driven Geological Data Integration using Fuzzy Logic: Theory and Application (퍼지 이론을 이용한 GIS기반 자료유도형 지질자료 통합의 이론과 응용)

  • ;;Chang-Jo F. Chung
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.243-255
    • /
    • 2003
  • The mathematical models for GIS-based spatial data integration have been developed for geological applications such as mineral potential mapping or landslide susceptibility analysis. Among various models, the effectiveness of fuzzy logic based integration of multiple sets of geological data is investigated and discussed. Unlike a traditional target-driven fuzzy integration approach, we propose a data-driven approach that is derived from statistical relationships between the integration target and related spatial geological data. The proposed approach consists of four analytical steps; data representation, fuzzy combination, defuzzification and validation. For data representation, the fuzzy membership functions based on the likelihood ratio functions are proposed. To integrate them, the fuzzy inference network is designed that can combine a variety of different fuzzy operators. Defuzzification is carried out to effectively visualize the relative possibility levels from the integrated results. Finally, a validation approach based on the spatial partitioning of integration targets is proposed to quantitatively compare various fuzzy integration maps and obtain a meaningful interpretation with respect to future events. The effectiveness and some suggestions of the schemes proposed here are illustrated by describing a case study for landslide susceptibility analysis. The case study demonstrates that the proposed schemes can effectively identify areas that are susceptible to landslides and ${\gamma}$ operator shows the better prediction power than the results using max and min operators from the validation procedure.

Truncus Arteriosus, Type IV -one case report- (동맥간증 제 IV형 -1예 보고-)

  • 이종태
    • Journal of Chest Surgery
    • /
    • v.13 no.3
    • /
    • pp.243-249
    • /
    • 1980
  • Truncus ateriosus is one of the cyanotic congenital heart disease. The incidence is relatively uncommon, as 0.4% of totoal congenital heart disease. Embryologically the defect is due to a lack of partitioning of the embryonic truncus and conus during the first few weeks of fetal life. The ventricular septal defect is invariable present. A single arterial vessel arises from the heart and supplies blood to the aorta, the lung, and the coronary arteries. In 1949, collett and Edwards classified this defect according to anatomic variation to four major types, such as type I, II, III, and IV. Type IV is defined that pulmonary arteries are absent, and the pulmonary arterial supply arises from the descending thoracic aorta. This patients often have a continuous murmur head particularly well in the interscapular area. No effective surgical treatment is available. We have experienced one case of truncus arteriosus, type IV of Collett and Edwards in the Department of Thoracic and Cardiovascular Surgery, Kyungbook National University Hospital. This patient was 10 year-old girl. The chief complaints were cyanosis and dyspnea on exertion since birth. She was admitted at this hospital on April 16, 1980. The continous machinery murmur was heard loudest at the interscapular area. The chest X-ray films revealed cardiomegaly with an increase in pulmonaryvascular markings. The pulmonary secotr was significantly concave. No filling of pulmonary arteries noticed by the right ventriculogram. There was possible biventricular hypertrophy in EKG. The echocardiogram showed that the demension of the aortic root was larger than normal and minimal increase of the left ventricular internal dimension. The cardiac catheterization data was obtained by use of the great saphenus vein approach. The systolic pressure of the right ventricular outflow tract was 80 mmHg and was similar to that of the aorta. The oxygen saturation data revealed the evidence of the left to right shunt at the level of ventricular septum. The patient was operated and the diagnosis was confirmed as trucus arteriosus, type IV. No effective surgical interventins were performed.

  • PDF