The purposes of this study were to investigate the influences of channel assessments on the usage of multi-channels by product types, and the differences in the usage of multi-channels among product types in buying decision making process for fashion products. Data were collected from 510 consumers in their 20s to 50s with purchasing experiences through multi-channel distribution system and living in Seoul and Kyunggi province; 491 were analyzed after deleting incomplete questionnaires. Factor analysis, multiple regression analysis and one-way ANOVA were used for statistical analysis by using SPSS 18.0. The results were as follows: 5 factors were extracted for channel assessment: utility, accuracy, risk, price benefit and sharing information. Price benefits, utility and sharing information for online channel tended to influence positively on the usage of online channel and online+offline channels. Accuracy and low perceived risk of offline influenced positively on offline and on+offline channel usages. The usage levels of on-line and off-line channels for cosmetics were significantly lower than the usage levels for clothes and accessories on information search, evaluation of alternatives, and purchase stages. Significant differences were also found in the usage levels of multi-channels (on+off-line) on information search and evaluation of alternatives stages. The usage levels of the multi-channels for clothes were the highest followed by those of accessories and cosmetics in order.
본 연구는 사회적 기업의 과업-기술 적합성(TTF)이 소셜네트워크서비스(SNS) 이용의도에 미치는 영향에 대해 검증하는 것이 목적이다. 사회적 기업, 소셜네트워크서비스, 과업-기술 적합성, 기술수용모형(TAM)에 관한 이론적 배경을 바탕으로 연구모형과 연구가설을 설정하였다. 본 연구에서는 인증 사회적 기업 86개를 대상으로 Smart PLS 2.0을 이용하여 구조방정식 모형을 분석하였다. 본 연구의 분석결과를 요약하면 다음과 같다. 첫째, 과업-기술 적합성이 지각된 유용성, 지각된 이용용이성, SNS 이용의도에 정(+)의 영향을 미치는 것으로 나타났다. 둘째, 지각된 유용성은 SNS 이용의도에 정(+)의 영향을 미치는 것으로 나타났지만, 지각된 이용용이성은 SNS 이용의도에 유의한 영향을 미치지 않는 것으로 나타났다. 본 연구의 결과는 과업-기술 적합성 측면에서 SNS가 사회적 기업의 업무에 적합한지에 대해 분석하여 다른 정보기술 분야의 이용의도에 적용할 수 있는 이론적 시사점과 사회적 기업에게 실무적인 시사점을 제공할 것이다.
This study examines the relationship between the usage of public bike and physical environment factors around the public bike stations using the public bike rental history data from 2016 to 2017 in Seoul, Korea. Focusing on the different influences of determinant factors by distance to public bike station, this study identifies influential factors that affect the usage of public bike. The results of the analysis are as follows. First, both the land use and physical environmental variables of bike station areas show strong associations with the usage of public bike. Second, the usage of public bike is also associated with neighborhood living facilities, business facilities, land use mix, the distance to subway station, public facilities and universities. This finding indicates that public bike has played a role as a transportation mode for the short-distance travel and commuting purposes in everyday life. Third, this study shows that the usage of public bike is strongly associated with the average slope, traffic volume around public bike stations, distance to streams or rivers, and the types of bike lane. This finding also indicates that surrounding environmental factors play an important role in the usage of public bike. Finally, this study identifies the different influences of determinant factors on the usage of public bike by distance to public bike station. This study suggests policy implications for the potential locations of public bike stations in the future.
This study examined the longitudinal effects of media usage by early school-age children and of maternal parenting stress on children's school adjustment. The study focused on the mediating effect of executive function difficulty. Longitudinal data to examine the hypothetical model were drawn from the eighth (2015) through tenth (2017) waves of the Panel Study of Korean Children (PSKC) collected by the Korea Institute of Child Care and Education (KICCE). A total of 581 children (293 boys and 288 girls) and their mothers were included. Confirmatory factor analysis, structural equation model, and bootstrapping analysis were applied using SPSS 25.0 and Amos 26.0. The results are as follows. First, no significant correlation was found between early school-age children's media usage and maternal parenting stress. Second, neither media usage by early school-age children nor maternal parenting stress were found to directly affect children's school adjustment. Third, media usage by early school-age children and maternal parenting stress were shown to indirectly affect children's school adjustment via executive function difficulties. In other words, higher levels of media usage by early school-age children and maternal parenting stress during the first grade lead to greater executive function difficulties after a year, which, in turn, lead to a lower level of school adjustment in the third grade. This study indicates the need to develop practical support for the psychological wellbeing of mothers while they are performing their role as a parent and for children in maintaining suitable levels of media usage during early childhood.
우리나라는 기후변화의 영향으로 지속되는 가뭄으로 인해 물 부족 문제가 심화되고 있다. 제1차 국가물관리기본계획에 따르면, 생활 및 공업용수 부족량은 과거 최대 가뭄빈도(50년) 기준으로 0.07억 m3/년으로 전망되고 있다. 이러한 물 부족 문제에 효과적으로 대응하기 위해서는 장기적인 용수 수요 전망이 필수적이다. 공업용수의 경우 월별 사용량이 비교적 일정하지만, 생활용수의 경우 월별 패턴이 뚜렷하기 때문에 연단위 분석이 아닌 월단위 분석을 수행해야 한다. 본 연구는 충청권역을 대상으로 2017~2021년의 월별 용수 이용량 자료에 대해 패턴을 분석하고, 기후 변수와의 상관성을 이용하여 용수 분배 비율을 계산하였다. 그 결과 월별 생활용수 이용량을 연 이용량으로 나눈 월별 용수 이용률을 다시 평균기온으로 나누는 분법으로 계산한 경우가 절대오차가 가장 작게 산정되었으며, 이를 활용하여 충청권역의 월별 분배 비율을 산정하였다. 또한 충청권역의 월별 분배 비율에 SSP5-8.5 시나리오의 평균기온을 곱해 충청권역의 미래 월별 용수 이용률을 전망하였다. 그 결과, 최댓값의 평균은 1.16에서 1.29로 증가하고 최솟값의 평균은 0.86에서 0.84로 감소하였으며, 1사분위수는 0.95에서 0.93으로 감소하고 3사분위수는 1.04에서 1.06으로 증가하였다. 따라서 미래에는 현재와 비슷한 패턴을 유지할 것으로 보이지만, 월별 용수 이용률의 변동성은 커질 것으로 예상된다.
Before an aircraft is delivered to customers, manufacturers have to verify required reliability for the aircraft. In usual, reliability of electronic equipments in military aircraft are predicted based on MIL-HDBK-217. But the specification has not been revised since 1995. Some alternatives including SR-332 and 217PLUS are suggested in this study. The processes and methods specified in MIL-HDBK-217 are compared with those of SR-332. Additionally, the predicted reliability of aircraft electronic equipment between usage data and field data are investigated using MIL-HDBK-217. The results show that predicted reliability of MIL-HDBK-217 is more conservative (underestimated) than that of usage data and field data.
다양한 학습 모델이 발전하고 있는 지금, 학습을 통한 다양한 시도가 진행되고 있다. 이중 에너지 분야에서 많은 연구가 진행 중에 있으며, 대표적으로 BEMS(Building energy Management System)를 볼 수 있다. BEMS의 경우 건물을 기준으로 건물에서 생성되는 다양한 DATA를 이용하여, 에너지 예측 및 제어하는 다양한 기술이 발전해가고 있다. 하지만 FEMS(Factory Energy Management System)에 관련된 연구는 많이 발전하지 못했으며, 이는 BEMS와 FEAMS의 차이에서 비롯된다. 본 연구에서는 실제 공장에서 수집한 DATA를 기반으로 하여, 전력량 예측을 하였으며 예측을 위한 기술로 시계열 DATA 분석 방법인 LSTM 알고리즘을 이용하여 진행하였다.
People have studied English using online English dictionaries when they looked for the meaning of English words or the example sentences. These days, as the AI technologies such as machine learning have been developing, documents can be translated in real time with Kakao, Papago, Google translators and so on. But, there has still been some problems with the accuracy of translation. The AI secretaries can be used for real-time interpreting, so this kind of systems are being used to translate such the web pages, papers into Korean. In this paper, we researched on the usage frequency of the combined English phrases from dictionaries by analyzing the number of the searched results on Google. With the result of this paper, we expect to help the people to use more English fluently.
In today's system operation, it is difficult to detect failures and take immediate action in the case of a shortage of manpower compared to the number of equipment or failures in vulnerable time zones, which can lead to delays in failure recovery. In addition, various algorithms exist to detect abnormal symptom data, and it is important to select an appropriate algorithm for each problem. In this paper, an ensemble-based isolation forest model was used to efficiently detect multivariate point anomalies that deviated from the mean distribution in the data set generated to predict system failure and minimize service interruption. And since significant changes in memory space usage are observed together with changes in CPU usage, the problem is solved by using LSTM-Auto Encoder for a collective anomaly in which another feature exhibits an abnormal pattern according to a change in one by comparing two or more features. did In addition, evaluation indicators are set for the performance evaluation of the model presented in this study, and then AI model evaluation is performed.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.1957-1980
/
2021
The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.