• Title/Summary/Keyword: Data Memory

Search Result 3,347, Processing Time 0.038 seconds

Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms (유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링)

  • Noh, Heeryong;Choi, Seulbi;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.19-38
    • /
    • 2017
  • Collaborative filtering (CF) algorithm has been popularly used for implementing recommender systems. Until now, there have been many prior studies to improve the accuracy of CF. Among them, some recent studies adopt 'hybrid recommendation approach', which enhances the performance of conventional CF by using additional information. In this research, we propose a new hybrid recommender system which fuses CF and the results from the social network analysis on trust and distrust relationship networks among users to enhance prediction accuracy. The proposed algorithm of our study is based on memory-based CF. But, when calculating the similarity between users in CF, our proposed algorithm considers not only the correlation of the users' numeric rating patterns, but also the users' in-degree centrality values derived from trust and distrust relationship networks. In specific, it is designed to amplify the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the trust relationship network. Also, it attenuates the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the distrust relationship network. Our proposed algorithm considers four (4) types of user relationships - direct trust, indirect trust, direct distrust, and indirect distrust - in total. And, it uses four adjusting coefficients, which adjusts the level of amplification / attenuation for in-degree centrality values derived from direct / indirect trust and distrust relationship networks. To determine optimal adjusting coefficients, genetic algorithms (GA) has been adopted. Under this background, we named our proposed algorithm as SNACF-GA (Social Network Analysis - based CF using GA). To validate the performance of the SNACF-GA, we used a real-world data set which is called 'Extended Epinions dataset' provided by 'trustlet.org'. It is the data set contains user responses (rating scores and reviews) after purchasing specific items (e.g. car, movie, music, book) as well as trust / distrust relationship information indicating whom to trust or distrust between users. The experimental system was basically developed using Microsoft Visual Basic for Applications (VBA), but we also used UCINET 6 for calculating the in-degree centrality of trust / distrust relationship networks. In addition, we used Palisade Software's Evolver, which is a commercial software implements genetic algorithm. To examine the effectiveness of our proposed system more precisely, we adopted two comparison models. The first comparison model is conventional CF. It only uses users' explicit numeric ratings when calculating the similarities between users. That is, it does not consider trust / distrust relationship between users at all. The second comparison model is SNACF (Social Network Analysis - based CF). SNACF differs from the proposed algorithm SNACF-GA in that it considers only direct trust / distrust relationships. It also does not use GA optimization. The performances of the proposed algorithm and comparison models were evaluated by using average MAE (mean absolute error). Experimental result showed that the optimal adjusting coefficients for direct trust, indirect trust, direct distrust, indirect distrust were 0, 1.4287, 1.5, 0.4615 each. This implies that distrust relationships between users are more important than trust ones in recommender systems. From the perspective of recommendation accuracy, SNACF-GA (Avg. MAE = 0.111943), the proposed algorithm which reflects both direct and indirect trust / distrust relationships information, was found to greatly outperform a conventional CF (Avg. MAE = 0.112638). Also, the algorithm showed better recommendation accuracy than the SNACF (Avg. MAE = 0.112209). To confirm whether these differences are statistically significant or not, we applied paired samples t-test. The results from the paired samples t-test presented that the difference between SNACF-GA and conventional CF was statistical significant at the 1% significance level, and the difference between SNACF-GA and SNACF was statistical significant at the 5%. Our study found that the trust/distrust relationship can be important information for improving performance of recommendation algorithms. Especially, distrust relationship information was found to have a greater impact on the performance improvement of CF. This implies that we need to have more attention on distrust (negative) relationships rather than trust (positive) ones when tracking and managing social relationships between users.

A Collaborative Filtering System Combined with Users' Review Mining : Application to the Recommendation of Smartphone Apps (사용자 리뷰 마이닝을 결합한 협업 필터링 시스템: 스마트폰 앱 추천에의 응용)

  • Jeon, ByeoungKug;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.1-18
    • /
    • 2015
  • Collaborative filtering(CF) algorithm has been popularly used for recommender systems in both academic and practical applications. A general CF system compares users based on how similar they are, and creates recommendation results with the items favored by other people with similar tastes. Thus, it is very important for CF to measure the similarities between users because the recommendation quality depends on it. In most cases, users' explicit numeric ratings of items(i.e. quantitative information) have only been used to calculate the similarities between users in CF. However, several studies indicated that qualitative information such as user's reviews on the items may contribute to measure these similarities more accurately. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's reviews can be regarded as the informative source for identifying user's preference with accuracy. Under this background, this study proposes a new hybrid recommender system that combines with users' review mining. Our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and his/her text reviews on the items when calculating similarities between users. In specific, our system creates not only user-item rating matrix, but also user-item review term matrix. Then, it calculates rating similarity and review similarity from each matrix, and calculates the final user-to-user similarity based on these two similarities(i.e. rating and review similarities). As the methods for calculating review similarity between users, we proposed two alternatives - one is to use the frequency of the commonly used terms, and the other one is to use the sum of the importance weights of the commonly used terms in users' review. In the case of the importance weights of terms, we proposed the use of average TF-IDF(Term Frequency - Inverse Document Frequency) weights. To validate the applicability of the proposed system, we applied it to the implementation of a recommender system for smartphone applications (hereafter, app). At present, over a million apps are offered in each app stores operated by Google and Apple. Due to this information overload, users have difficulty in selecting proper apps that they really want. Furthermore, app store operators like Google and Apple have cumulated huge amount of users' reviews on apps until now. Thus, we chose smartphone app stores as the application domain of our system. In order to collect the experimental data set, we built and operated a Web-based data collection system for about two weeks. As a result, we could obtain 1,246 valid responses(ratings and reviews) from 78 users. The experimental system was implemented using Microsoft Visual Basic for Applications(VBA) and SAS Text Miner. And, to avoid distortion due to human intervention, we did not adopt any refining works by human during the user's review mining process. To examine the effectiveness of the proposed system, we compared its performance to the performance of conventional CF system. The performances of recommender systems were evaluated by using average MAE(mean absolute error). The experimental results showed that our proposed system(MAE = 0.7867 ~ 0.7881) slightly outperformed a conventional CF system(MAE = 0.7939). Also, they showed that the calculation of review similarity between users based on the TF-IDF weights(MAE = 0.7867) leaded to better recommendation accuracy than the calculation based on the frequency of the commonly used terms in reviews(MAE = 0.7881). The results from paired samples t-test presented that our proposed system with review similarity calculation using the frequency of the commonly used terms outperformed conventional CF system with 10% statistical significance level. Our study sheds a light on the application of users' review information for facilitating electronic commerce by recommending proper items to users.

Analysis of Genetics Problem-Solving Processes of High School Students with Different Learning Approaches (학습접근방식에 따른 고등학생들의 유전 문제 해결 과정 분석)

  • Lee, Shinyoung;Byun, Taejin
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.4
    • /
    • pp.385-398
    • /
    • 2020
  • This study aims to examine genetics problem-solving processes of high school students with different learning approaches. Two second graders in high school participated in a task that required solving the complicated pedigree problem. The participants had similar academic achievements in life science but one had a deep learning approach while the other had a surface learning approach. In order to analyze in depth the students' problem-solving processes, each student's problem-solving process was video-recorded, and each student conducted a think-aloud interview after solving the problem. Although students showed similar errors at the first trial in solving the problem, they showed different problem-solving process at the last trial. Student A who had a deep learning approach voluntarily solved the problem three times and demonstrated correct conceptual framing to the three constraints using rule-based reasoning in the last trial. Student A monitored the consistency between the data and her own pedigree, and reflected the problem-solving process in the check phase of the last trial in solving the problem. Student A's problem-solving process in the third trial resembled a successful problem-solving algorithm. However, student B who had a surface learning approach, involuntarily repeated solving the problem twice, and focused and used only part of the data due to her goal-oriented attitude to solve the problem in seeking for answers. Student B showed incorrect conceptual framing by memory-bank or arbitrary reasoning, and maintained her incorrect conceptual framing to the constraints in two problem-solving processes. These findings can help in understanding the problem-solving processes of students who have different learning approaches, allowing teachers to better support students with difficulties in accessing genetics problems.

Comprehensive Geriatric Assessment for Community Living Elderly in a Rural Area (일부 농촌지역 거주 노인들에 대한 포괄적 노인평가)

  • Rhee, Jung-Ae;Shin, Hee-Young;Chung, Eun-Kyung;Shin, Jun-Ho
    • Journal of agricultural medicine and community health
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • The aim of this study was to analyse and conduct the comprehensive geriatric assessment for the elderly in rural area. The subjects were 388 older people aged 65 years or older living in the community. Data for comprehensive assessment such as physical, mental, functional, social and environmental conditions were collected from January to February, 2001 through a person-to-person interview. Of the total 388 olders, 169(43.6%) were men and 219(56.4%) were women. Mean ages of men and women were $73.5{\pm}6.4$ and $74.0{\pm}6.2$ years respectively. Three common diseases of the elderly were arthralgia(51.6%), chronic back pain(33.2%) and hypertension(18.6%), and higher in women than in men. Impairment rate of vision, hearing and bowel or bladder control was 59.0%, 20.1%, and 28.4% respectively. But that of lover extremities 3.4%. In terms of cognitive function, short term memory loss was found in 33.7% of males and 44.7% of females. The percentage of fully independent in the six ADL items was 72.2% in men and 58.9% in women. In the social supportive system, 49.5% of the elderly were living with spouse, and 22.9% living alone, 26.3% having care giver. These results will provide basic data for the development of community-based health program, which gives appropriate health service for the elderly living in the community.

  • PDF

Semiological Implication of Dance Images in TV Advertisement (TV광고에 나타난 무용이미지의 기호학적 의미에 관한 연구)

  • Park, Ayoung
    • Trans-
    • /
    • v.1
    • /
    • pp.21-44
    • /
    • 2016
  • Advertisement is composed with symbol and sign with messages trying to express. Especially, ad with dancer introduces goods or meaning of contents with the motion of dance. In this, contents of dance or motion of dancer contains symbol and sign, understanding how ad and dance are expressed meanings with which symbol and the symbolic meaning of dance or dancer on ad. To that end, this study is for analyzing expressed symbol with dance corresponds with the aim of ad and finding the way or attitude of how normal people accept dance by reevaluating symbolic meaning of dance itself. In this study, advertisement producer and director's related data is secured for understanding direction and intention of producer, and previous study related with the study purpose, image, and effect are analyzed for understanding image of dance as a physical sign on TV advertisement. With data from www.TVCF.co.kr. TV advertisement analysis is conducted only with four ads in 2008(Nam Kwang Eng. & Const Co., Lotte Dept. Store(premium sale/gift card), Hyundai Motor Company Santa Fe -Pilobolus) and one ad in 2011(PNS The zone Sash Italy Arena di Verona when dance was used for advertisement with the highest frequency per year. Also, based on considered important factors from repeatedly watching each advertisement, scenes where movement or motion of dancer and screen word is greatly changed are analyzed as a priority. Image analysis of dance is conducted with structure studies based on physical image(line, costume, expression) and dan image(type motion, qualitative feature, mood of dance). As a result, the symbolic dance image appeared in TV advertisement can be discussed as follows. First, symbol and sign of dance on advertisement corresponds with material objects of advertisement. For instance, on the TV advertisement where Lee Youngwoo appeared, his motion as a signifer means challenge for the future of Nam Kwang Eng. & Const Co., with fast turn, jump, assemble turning jump, and sliding. Second, physical image of dancer depending on intention of sender corresponds in general, but there are somewhat differences in image of dance. This makes people to unconsciously recognize symbolic image of dance on TV ad while they watch it at the same time. Especially, when it comes to advertisement, it exposes frequently with broadcasting of organized programs from a broadcaster, living long-time memory. It can be differ based on idea and character of each of receiver. Advertisement is a medium making people naturally adopt cultural art for ordinary people in their lives. Broadcasting public art from TV advertisement widely exposes pure art to people, which was only avaliable for minority, sublimating it as an art of public culture.

  • PDF

A study on the improving and constructing the content for the Sijo database in the Period of Modern Enlightenment (계몽기·근대시조 DB의 개선 및 콘텐츠화 방안 연구)

  • Chang, Chung-Soo
    • Sijohaknonchong
    • /
    • v.44
    • /
    • pp.105-138
    • /
    • 2016
  • Recently with the research function, "XML Digital collection of Sijo Texts in the Period of Modern Enlightenment" DB data is being provided through the Korean Research Memory (http://www.krm.or.kr) and the foundation for the constructing the contents of Sijo Texts in the Period of Modern Enlightenment has been laid. In this paper, by reviewing the characteristics and problems of Digital collection of Sijo Texts in the Period of Modern Enlightenment and searching for the improvement, I tried to find a way to make it into the content. This database has the primary meaning in the integrating and glancing at the vast amounts of Sijo in the Period of Modern Enlightenment to reaching 12,500 pieces. In addition, it is the first Sijo data base which is provide the variety of search features according to literature, name of poet, title of work, original text, per period, and etc. However, this database has the limits to verifying the overall aspects of the Sijo in the Period of Modern Enlightenment. The title and original text, which is written in the archaic word or Chinese character, could not be searched, because the standard type text of modern language is not formatted. And also the works and the individual Sijo works released after 1945 were missing in the database. It is inconvenient to extract the datum according to the poet, because poets are marked in the various ways such as one's real name, nom de plume and etc. To solve this kind of problems and improve the utilization of the database, I proposed the providing the standard type text of modern language, giving the index terms about content, providing the information on the work format and etc. Furthermore, if the Sijo database in the Period of Modern Enlightenment which is prepared the character of the Sijo Culture Information System could be built, it could be connected with the academic, educational contents. For the specific plan, I suggested as follow, - learning support materials for the Modern history and the national territory recognition on the Modern Age - source materials for studying indigenous animals and plants characters creating the commercial characters - applicability as the Sijo learning tool such as Sijo Game.

  • PDF

COMPARATIVE STUDY OF BEHAVIOR AND COGNITIVE FUNCTION BY ADMINISTRATION OF METHYLPHENIDATE AND IMIPRAMINE IN ATTENTION DEFICIT-HYPERACTIVITY DISORDER (Methylphenidate와 Imipramine투여에 따른 주의력 결핍${\cdot}$과잉운동장애 환아의 행동 및 인지기능 변화에 대한 연구)

  • Ahn, D.H;Hong, K.E;Oh, K.J;Shin, M.S;Yoo, B.C;Chung, K.M
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.26-45
    • /
    • 1992
  • This study presents the behavioral and cognitive changes by administration of methylphenidate(MPH) and imipramine(IMI) for the treatment of attention-deficit hyperactivity disorder(ADHD) in $5_{1/2}{\sim}12$ years old children referred to child psychiatric clinics. Behavioral changes are assessed with parent's and teacher's ratings. Drug effects on attention. short-term memory, and impulsivity are evaluated with psychological tests in laboratory. The changes were assessed twice in a 8-week periods. The data were analyzed seperately for 15 subjects each drug using repeated measured analysis of variance(ANOVA). The findings indicates that behavioral and cognitive impairments are improved by both drugs, but impulsivity is not. And MPH is superior to IMI on the improvement of attentional problem ; especially the findings indicates important differences between simple task and complex. perceptual-search task. These data confirm the effectiveness of MPH for treatment of ADHD, also raise questions regarding assessment method of attention and impulsivity as fell as importance of impulsivity in ADHD.

  • PDF

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.

Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System (추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법)

  • Lee, O-Joun;You, Eun-Soon
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.119-142
    • /
    • 2015
  • With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.

Development of 1ST-Model for 1 hour-heavy rain damage scale prediction based on AI models (1시간 호우피해 규모 예측을 위한 AI 기반의 1ST-모형 개발)

  • Lee, Joonhak;Lee, Haneul;Kang, Narae;Hwang, Seokhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.5
    • /
    • pp.311-323
    • /
    • 2023
  • In order to reduce disaster damage by localized heavy rains, floods, and urban inundation, it is important to know in advance whether natural disasters occur. Currently, heavy rain watch and heavy rain warning by the criteria of the Korea Meteorological Administration are being issued in Korea. However, since this one criterion is applied to the whole country, we can not clearly recognize heavy rain damage for a specific region in advance. Therefore, in this paper, we tried to reset the current criteria for a special weather report which considers the regional characteristics and to predict the damage caused by rainfall after 1 hour. The study area was selected as Gyeonggi-province, where has more frequent heavy rain damage than other regions. Then, the rainfall inducing disaster or hazard-triggering rainfall was set by utilizing hourly rainfall and heavy rain damage data, considering the local characteristics. The heavy rain damage prediction model was developed by a decision tree model and a random forest model, which are machine learning technique and by rainfall inducing disaster and rainfall data. In addition, long short-term memory and deep neural network models were used for predicting rainfall after 1 hour. The predicted rainfall by a developed prediction model was applied to the trained classification model and we predicted whether the rain damage after 1 hour will be occurred or not and we called this as 1ST-Model. The 1ST-Model can be used for preventing and preparing heavy rain disaster and it is judged to be of great contribution in reducing damage caused by heavy rain.