• Title/Summary/Keyword: Data Input Approach

Search Result 808, Processing Time 0.023 seconds

The importance of applying an appropriate approach to modelling wastewater treatment plants

  • Dzubur, Alma;Serdarevic, Amra
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.121-132
    • /
    • 2022
  • Wastewater treatment plants (WWTPs) are designed and built to remove contaminants from wastewater. WWTPs are composed of various facilities equipped with hydro-mechanical and electrical equipment. This paper presents a comparison of two different approaches for WWTPs modelling. Static modelling is suitable for determining the dimensions of facilities and equipment capacity. The special significance of this approach is for the design of new plants, i.e., when a very small number of input data on the quantities and composition of the influent wastewater is available. Dynamic modelling is expensive, time consuming and requires great expertise in the use of simulators, models and very good understanding of the treatment processes. Also, dynamic modelling is very important to use for optimization, consideration of future scenarios and also possible scenarios on the plant. The comparison of two approaches was made on the input data from the biggest and most important plant in Bosnia and Herzegovina (B&H)-WWTP Butila (Sarajevo). The main idea is to show the differences between two demanding accesses. It is important to know how to apply an adequate approach to research and solve the set task. The II phase of the plant Butila, which includes the removal of nutrients, is planned in several years and therefore the importance of research has increased.

A Study on Dual Response Approach Combining Neural Network and Genetic Algorithm (인공신경망과 유전알고리즘 기반의 쌍대반응표면분석에 관한 연구)

  • Arungpadang, Tritiya R.;Kim, Young Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.5
    • /
    • pp.361-366
    • /
    • 2013
  • Prediction of process parameters is very important in parameter design. If predictions are fairly accurate, the quality improvement process will be useful to save time and reduce cost. The concept of dual response approach based on response surface methodology has widely been investigated. Dual response approach may take advantages of optimization modeling for finding optimum setting of input factor by separately modeling mean and variance responses. This study proposes an alternative dual response approach based on machine learning techniques instead of statistical analysis tools. A hybrid neural network-genetic algorithm has been proposed for the purpose of parameter design. A neural network is first constructed to model the relationship between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Using empirical process data, process parameters can be predicted without performing real experimentations. A genetic algorithm is then applied to find the optimum settings of input factors, where the neural network is used to evaluate the mean and variance response. A drug formulation example from pharmaceutical industry has been studied to demonstrate the procedures and applicability of the proposed approach.

Detection of False Laser Marks Using Neural Network (신경망을 이용한 레이저마크 오류 검출기법)

  • 신중돈;한헌수
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.87-90
    • /
    • 2002
  • This paper has been studied a new approach using neural network to detect false laser marks. In the proposed approach, input images are segmented into R, G and B colors and implements mask areas respectively. And then average and variation values of the each mask area are extracted for the learning process to minimize input nodes. Using this technique, the new input data is obtained and implemented to the back-propagation algorithm using multi layer perception. This paper reduces the computational complexity necessary and shows better effectiveness to inspect false laser marks.

  • PDF

A Measurement Way on the Effectiveness of Port Investment: Congestion Model Approach (항만투자의 유효성 측정방법: congestion모형 접근)

  • 박노경
    • Journal of Korea Port Economic Association
    • /
    • v.19 no.2
    • /
    • pp.33-53
    • /
    • 2003
  • The purpose of this paper is to investigate the effectiveness of port investemnt which is one of the important elements for measuring the port efficiency by using congestion approach of DEA(Data Envelopment Analysis). Congestion is said to be present when increases in inputs result in input reductions. Congestion approach takes the forms of weak input disposability and strong input disposability. Empirical analysis by using congestion approach in this paper identified inefficiencies in the inputs including port investment, and indicated inefficient ports like the ports of Sokcho, Gunsan, Pohang, and Seoguipo which shows the large amount of slacks with congestion especially in terms of port investment. Therefore these ports should examine the reason about the inefficiency of port investment. The main policy implication based on the findings of this study is that The Ministry of Maritime Affairs & fisheries in Korea should introduce congestion approach when the amount of port investment to each port is decided.

  • PDF

A transformed input-domain approach to fuzzy modeling-KL transform approch (입력 공간의 변환을 이용한 새로운 방식의 퍼지 모델링-KL 변환 방식)

  • 김은태;박민기;이수영;박민용
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.58-66
    • /
    • 1998
  • In many situations, it is very important to identify a certain unkown system, it from its input-output data. For this purpose, several system modeling algorithms have been suggested heretofore, and studies regarding the fuzzy modeling based on its nonlinearity get underway as well. Generatlly, fuzzy models have the capability of dividing input space into several subspaces, compared to linear ones. But hitherto subggested fuzzy modeling algorithms do not take into consideration the correlations between components of sample input data and address them independently of each other, which results in ineffective partition of input space. Therefore, to solve this problem, this letter proposes a new fuzzy modeling algorithm which partitions the input space more efficiently that conventional methods by taking into consideration correlations between components of sample data. As a way to use correlation and divide the input space, the method of principal component is ued. Finally, the results of computer simulation are given to demonstrate the validity of this algorithm.

  • PDF

Estimating Fuzzy Regression with Crisp Input-Output Using Quadratic Loss Support Vector Machine

  • Hwang, Chang-Ha;Hong, Dug-Hun;Lee, Sang-Bock
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.53-59
    • /
    • 2004
  • Support vector machine(SVM) approach to regression can be found in information science literature. SVM implements the regularization technique which has been introduced as a way of controlling the smoothness properties of regression function. In this paper, we propose a new estimation method based on quadratic loss SVM for a linear fuzzy regression model of Tanaka's, and furthermore propose a estimation method for nonlinear fuzzy regression. This approach is a very attractive approach to evaluate nonlinear fuzzy model with crisp input and output data.

  • PDF

A Hybrid Learning Model to Detect Morphed Images

  • Kumari, Noble;Mohapatra, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.364-373
    • /
    • 2022
  • Image morphing methods make seamless transition changes in the image and mask the meaningful information attached to it. This can be detected by traditional machine learning algorithms and new emerging deep learning algorithms. In this research work, scope of different Hybrid learning approaches having combination of Deep learning and Machine learning are being analyzed with the public dataset CASIA V1.0, CASIA V2.0 and DVMM to find the most efficient algorithm. The simulated results with CNN (Convolution Neural Network), Hybrid approach of CNN along with SVM (Support Vector Machine) and Hybrid approach of CNN along with Random Forest algorithm produced 96.92 %, 95.98 and 99.18 % accuracy respectively with the CASIA V2.0 dataset having 9555 images. The accuracy pattern of applied algorithms changes with CASIA V1.0 data and DVMM data having 1721 and 1845 set of images presenting minimal accuracy with Hybrid approach of CNN and Random Forest algorithm. It is confirmed that the choice of best algorithm to find image forgery depends on input data type. This paper presents the combination of best suited algorithm to detect image morphing with different input datasets.

Input Variable Importance in Supervised Learning Models

  • Huh, Myung-Hoe;Lee, Yong Goo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.239-246
    • /
    • 2003
  • Statisticians, or data miners, are often requested to assess the importances of input variables in the given supervised learning model. For the purpose, one may rely on separate ad hoc measures depending on modeling types, such as linear regressions, the neural networks or trees. Consequently, the conceptual consistency in input variable importance measures is lacking, so that the measures cannot be directly used in comparing different types of models, which is often done in data mining processes, In this short communication, we propose a unified approach to the importance measurement of input variables. Our method uses sensitivity analysis which begins by perturbing the values of input variables and monitors the output change. Research scope is limited to the models for continuous output, although it is not difficult to extend the method to supervised learning models for categorical outcomes.

Nonlinear mappings of interval vectors by neural networks (신경회로망에 의한 구간 벡터의 비선형 사상)

  • 권기택;배철수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2119-2132
    • /
    • 1996
  • This paper proposes four approaches for approximately realizing nonlinear mappling of interval vectors by neural networks. In the proposed approaches, training data for the learning of neural networks are the paris of interval input vectors and interval target output vectors. The first approach is a direct application of the standard BP (Back-Propagation) algorithm with a pre-processed training data. The second approach is an application of the two BP algorithms. The third approach is an extension of the BP algorithm to the case of interval input-output data. The last approach is an extension of the third approach to neural network with interval weights and interval biases. These approaches are compared with one another by computer simulations.

  • PDF