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Estimating Fuzzy Regression with Crisp Input-Output
Using Quadratic Loss Support Vector Machine
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Abstract

Support vector machine(SVM) approach to regression can be found in
information science literature. SVM implements the regularization technique
which has been introduced as a way of controlling the smoothness
properties of regression function. In this paper, we propose a new
estimation method based on quadratic loss SVM for a linear fuzzy
regression model of Tanaka's, and furthermore propose a estimation
method for nonlinear fuzzy regression. This approach is a very attractive
approach to evaluate nonlinear fuzzy model with crisp input and output
data.

Keywords :@ Crisp data, fuzzy regression, linear programming,
quadratic loss, quadratic programming, support vector machine.

1. Introduction

Fuzzy linear regression provides a method for tackling regression problems
lacking significance amount of data for determining regression models and with
vague relationships between the dependent variables. The concept of fuzzy
regression analysis was introduced by Tanaka et al.(1982), where an LP based
method with symmetric triangular fuzzy parameters was proposed. The method is
recommended for practical situations where decisions often have to be made on
the basis of imprecise and partially available data where human estimation is
influential. This first attempt of applying fuzzy regression was done using
non-fuzzy input experimental data. An extension of the idea was reported by
Tanaka(1987) comparing the capability to process fuzzy input experimental data.
Heshmaty and Kandel(1985) applied this method to forecasting in uncertain
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environment and Watada(1983) applied the idea of fuzzy regression to fuzzy
time-series. Fuzzy data analysis, regarded as a non-statistical procedure for
possibilistic systems, was reported by Tanaka(1987), and Tanaka et al.(1982).

Fuzzy regression has been also investigated from the viewpoint of least square
regression. Celmins(1987a,b) and Diamond(1988) developed several models for fuzzy
least squares fitting. In this paper, we propose a new estimation method based on
quadratic loss SVM for a linear fuzzy regression model of Tanaka's, and
furthermore propose a estimation method for nonlinear fuzzy regression. Basically,
the proposed method utilizes Tanaka and Lee(1998)’s idea based on quadratic
programming(QP).

2. Fuzzy Regression for Crisp Input-Output Data

In this section, we illustrate how to get solutions for fuzzy linear regression
models using LP and QP approaches proposed by Tanaka et al.(1982) and Tanaka
and Lee(1998), respectively.

Suppose that we are given ftraining data {(x, »;,), i=1,,n}CX XR,
where X denotes the space of the input patterns. We begin by describing the case
of fuzzy linear regression functions Y(x), taking the form

Y(x) =A)+Aix;++Apxy=A'x, (1)
where x= (1,2, -, %,)' is a real input vector, A= (A,,A,, ,A,) is an
interval coefficient vector, and Y{x) is the corresponding estimated interval. An
interval coefficient A; is denoted as A;=(a;, ¢;) where a; is a center and ¢;
is a radius. By interval arithmetic, the regression model (1) can be expressed as

Y(x;) = (ag, cp)+ (a1, c))xin+ -+ (@my Cu) X im

= (gt axp+t -+ auximcot alxal + -+ cplximl) )
= (a'x;, c'ixil),
where a = (ap, a1, **, an)', c= (cy, c1, ", cw)', and |x;1=(1,1x 4], -,
1% iml ).

We first illustrate LP approach proposed by Tanaka et al.(1982), which solves
the following LP problem
J= ,Z, c’lx;l

a'x;+ (1—-h)c'lx |2y, a'x;— (1—h)c'lx;l <y,
c; 20, :1=0,1,",m

subject to
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we illustrate how to get solutions for fuzzy linear regression models using QP
approach proposed by Tanaka and Lee(1998). In principle, Tanaka and Lee(1998)
use the formulation integrating central tendency and possibilistic property. Thus,
we consider a new objective function which reflects both properties of least
squares and possibilistic approaches

J= Ri—ax)t+ Bclxillnle ©

where 2|xi||x,~l' is a symmetric positive definite matrix. Fuzzy linear
&

regression analysis using this new objective function (3) is to determine the

interval coefficients A;=(a;, ¢;),i=0,1,'*, m by solving the following QP

problem:

min , . J= g(%‘“atxi)z‘*‘ gc'lx,-llxil'c (4)
subject to
a'x;+ (1-h)c'lxil=y;, a’'x;— (1—-h)c'lx;| <y,
c;=20,:i=0,1,m

3. Quadratic Loss SVM for Fuzzy Regression

In this section, we propose a new method to evaluate interval linear and
nonlinear regression models combining the possibility estimation formulation
integrating the property of central tendency with the principle of SVM. We first
need to look at how to get solutions for interval linear regression models by
implementing the SVM approach. We follow the way of constructing objective
function in SVM regression. Then, the objective function can be assumed as the
following quadratic function:

min, . §(lal®+1cl®+ % (3&+ Fehi+ed) )
subject to
c'lx;l < &y
yi—a'x; <&y, a'x;— v, <&, i=1,n
a'x;+ (1=h)c'lx;l 2y, a'x;,— (1—h) 'zl <y,
¢;20, i=0,1,~,m

Although it is possible to use two weight coefficients like Tanaka and Lee(1998),
we use one weight coefficient. Here, &; represents spreads of the estimated

outputs, and &,;, £5; are slack variables representing upper and lower constraints

on the outputs of the model. Hence, we can construct a Lagrange function as
follows:
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Ttlelh + F(HA ekt ad)

- g‘a’u(fu_ d'x;) 6)

- Z:la’zf(fz

—yit+ta'x;)— ga;i(é_z{_ a'x;+y)

- Zlaai(atxi+ (1—h)clx; | —y;) — glagi(yi— a'x;+(1—-h)c'lx;])

Here, ai;, a3y,

point condition

@5, a3;, @3; are Lagrange multipliers. It follows from the saddle
that the partial derivatives of L with respect to the primal

variables (a, ¢, €,;, £3:, £3;) have to vanish for optimality.

% =0— a= Z}(a’y— a3)xi+ §(03,'_" az)x; @
L =0 - o= Raulxl+1-h) Blaw+aidlxl ®
_%L_;___O_%g“: Lyah. ©
a—‘g—) =0~ & = Lafy (10)

Substituting (7)-(10) into (6) yields the dua! optimization problem.

maximize{

—%(iZI(QZi"a;i)(QZi_a;j)xij

+ 2 ilﬁ:l(dzi'a’gi)(a’sj"a’gj)xij + igl(a’sf‘agi)(a’.?i"a;j)xij

+ 2 @,
i,=1

+(1-h)

syl x5 = 20=8) 2 anley+ei) ezl an

P 3 (gt @i (ayt a3 xillal) - 55 Bak

— —ZL; g(agﬁ'aé?) + Z‘(agl-~a§,2»)y,-+ Zl(ag,«—a;?)yi}

subject to

@i, A, @20, k=2,3.

Solving (11) with above constraints determines the Lagrange multipliers, a;,

. t . . . . .
a g, a,:,-. Hence, if c¢’lx|>0, then the linear interval regression function is as

follows:

Next, we wil
interval regress

Y(x) = (a‘x, c'lx]) (12)
1 consider nonlinear interval regression model. In contrast to linear
ion, there have been no articles on nonlinear interval regression. In
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this paper we treat nonlinear interval regression, without assuming the underlying
model function. In the case where a linear regression function is inappropriate
SVM makes algorithm nonlinear. This could be achieved by simply preprocessing

input patterns x; by a map O: R?Y > E into some feature space E and then

applying SVM regression algorithm. This is an astonishingly straightforward way.
First notice that the only way in which the data appears in (11) is in the form

of inner products xfx i !xiltl x;|. The algorithm would only depend on the data
through dot products in E, ie. on functions of the form K(x;, x;)=.

O(x) 0(x;), K(lxil,lx;1)=0 x,;1)"@(| x;|). The well used kernels for

regression problem are given below.
_dz—y®
K(x,y) = (x'y+1), K(z,9)=e¢ ¥
Here, p and ¢ are kernel parameters. In final, the nonlinear interval regression
solution is given by
1

maximize{— 5( 2 (ag;—a3)(as—as)K(x;, x;)
i,=1

+2 33 (ay—as)ay—a3)K(x,, %))

+ iil(a’:}i_a;i)(a"i}'_a;)')K(xi, x;)+ 2 aa; K0 x0,1x;0)

i,=1
_Z(I_h) i}i:la“(aw-i-a;j)l{(lxfl,lle) : (13

+(A=1)? 3 (asit ad) (ag+ i) KA, 15,0) = -

1=

- 95 Blabtaid) + Bah—aiyi+ Beh-aiy)

subject to

2
a .
1=1 L

@i, Qpi, @120, k=2,3.

4. Empirical Study

In this section, one example is used to verify the effectiveness of the proposed
SVM for the fuzzy regression with crisp data. This simulation was conducted in
the Matlab environment. In this study, we show the results for fuzzy nonlinear
regression only. The data sets are given in Table 1 below, which are taken from
Gunn(1998). Gunn(1998) shows that the nonlinear model is appropriate for this
data set. Here, we use Gaussian kernel and penalty constant =35, kernel
parameters ¢ = (.8, which have been determined by the leave-one-out method.
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Table 1: The data set for fuzzy nonlinear regression

x| 1 3 4 56 78 102 110 115 127
yi |-16 -18 -10 12 22 68 100 100 100

In Figure 1 the solid, the dash-dotted and the dotted lines represent the fitted
center, the upper and the lower limitations, respectively, when k= 0. As seen
from Figure 1, the proposed method works quite well. In fact, this method is
much simpler and computationally inexpensive. Our procedure has an advantage
that we do not need assume the underlying model function.

Fitted Canter Curve
© Data
- Fiited Upper Limit
-- Fiited Lower Limit

Figure 1. The estimation result for fuzzy nonlinear regression

References

1. Celmins, A. (1987a). Least model fitting to fuzzy vector data, Fuzzy Sets
and Systems, 22, 245-269.

2. Celmins, A. (1987b). Multidimensional least-squares fitting of fuzzy models,
Math. Modelling, 9, 669-690.

3. Diamond, P. (1988). Fuzzy least squares, Inform. Sci., 46, 141-157.

4. Gunn, S. (1998). Support vector machines for classification and regression,
ISIS Technical Report, U. of Southampton.

5. Heshmaty, B., Kandel, A. (1985). Fuzzy linear regression and its
applications to forecasting in uncertain environment, Fuzzy Sets and
Systems, 15, 159-191.

6. Tanaka, H., Uejima, S., Asia, K. (1982). Linear regression analysis with

fuzzy model, IEEE Trans. Man. Cybernet, 12, 903-907.



Estimating Fuzzy Regression with Crisp Input-Output Using Quadratic Loss Support Vector Machine  §9

7. Tanaka, H. (1987). Fuzzy data analysis by possibilistic linear models, Fuzzy
Sets and Systems, 24, 363-375.

8. Tanaka, H., Lee, H. (1998). Interval regression analysis by quadratic
programming approach, IEEE Trans. Fuzzy Systems, 6, 473-481.

9. Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer, New
York.

10. Watada, J. (1983). Theory of fuzzy multivariate analysis and its
applications, Ph. D. Dissertation, University of Osaka Prefecture.



